E&E 105: TNP 50 Anos

 Economia e Energia  –  http://ecen.com.br

Nº 105, outubro a dezembro de 2019
ISSN 1518-2932 Disponível em: http://eee.org.br e http://ecen.com (números anteriores)

Palavra do Editor:

O TNP Completa 50 anos, devemos ratificar o TPAN

A Organização das Nações Unidas foi estruturada de uma maneira pragmática onde os países mais poderosos, os que se consideraram os vencedores da Segunda Guerra Mundial, reservaram para si o poder de veto no Conselho de Segurança.

A tradição diplomática brasileira, pelo menos até o Governo Bolsonaro, optou por prestigiar as organizações multilaterais e, ao invés de combater a desigualdade de direito entre as nações, dedica seus esforços a conseguir o destaque que o País se julga merecedor, inclusive o direito de ser membro permanente do Conselho de Segurança. Fundamentalmente, o Brasil concorda com o princípio não igualitário da Organização, mas considera que sua importância entre as nações ainda não foi adequadamente reconhecida.

Mesmo sem alcançar êxito pleno, o Brasil conseguiu um lugar de destaque no Sistema ONU, com participação importante em órgãos diretivos, e se firmou como um ator importante no conjunto de organizações que compõem o Sistema.

No que tange as armas nucleares, o Brasil manteve uma atuação coerente de defender os usos apenas pacíficos da energia nuclear e seu direito de desfrutar dos benefícios científicos e tecnológico dessa energia e defende, coerentemente, uma política efetiva de desarmamento nuclear.

Dentro da coerência desses princípios, o Brasil recusou, desde o início, o Tratado de Não Proliferação Nuclear. Acabou aderindo a ele, apesar de continuar a considerá-lo discriminatório. Antes, já havia firmado acordos que proibiam atividades nucleares não pacificas e colocou, em sua própria Constituição, o compromisso de que suas atividades nucleares seriam exclusivamente pacíficas. Recentemente, o Brasil teve papel importante na proposição e aprovação pela Assembleia da ONU do Tratado de Proscrição de Armas Nucleares – TPAN, que visa banir, sem discriminação, todas as armas nucleares.

Urge agora ratificá-lo.

Carlos Feu Alvim

 _ _ _ _ _ _ _ _ _ _ _ _

Sumário

O TNP ESTÁ FAZENDO CINQUENTA ANOS DE VIGÊNCIA, NADA A COMEMORAR

Resumo

Palavras Chave:

O TNP

A Conveniência de Ratificar o TPAN

Bibliografia

_ _ _ _ _ _ _ _ _ _ _ _

 

Opinião:                

O TNP ESTÁ FAZENDO CINQUENTA ANOS DE VIGÊNCIA, NADA A COMEMORAR

 

Carlos Feu Alvim e Olga Mafra

Resumo

O Tratado de Não Proliferação Nuclear – TNP foi concebido para limitar o número de países com armas nucleares. Ele está completando, em 2020, cinquenta anos de vigência. Não há muito a comemorar.

O Tratado, que o Brasil sempre considerou discriminatório, divide os países em com armas nucleares e sem armas nucleares.

Aos primeiros consagra o direito de manterem as armas nucleares e aos demais veda esse direito e os sujeita a um sistema de verificação de todos os materiais e instalações nucleares pela AIEA.

Os cinquenta anos de vigência do TNP são uma oportunidade de avaliar seus resultados que não foram eficazes. De fato, o número de países possuidores de armas nucleares quase dobrou e os arsenais cresceram notavelmente até o final dos anos oitenta do século XX.

Os tratados de redução de armas, ocorridos pós distensão entre EUA e a extinta União Soviética, estão sendo abandonados ou prescreveram. Em todos os países nuclearmente armados estão em curso programas de modernização do arsenal nuclear, o que torna improvável qualquer programa sério de desarmamento.

Apesar disso, não parece oportuno abandonar o TNP e o Brasil deve usar seu prestígio para exigir compromissos de desarmamento dos nuclearmente armados nele previstos.

Quanto ao Tratado sobre a Proibição de Armas Nucleares – TPAN, o Brasil deveria ratificá-lo, reafirmando seus esforços na ocasião de sua aprovação pela Assembleia Geral da ONU. O TPAN não se opõe ao TNP, mas tem as vantagens de não ser discriminatório e de criar uma maior pressão pelo desarmamento.

Palavras Chave:

TNP, TPAN, não proliferação nuclear, armamentos nucleares, desarmamento, proliferação nuclear

____________

 

O TNP

O Tratado de Não Proliferação Nuclear – TNP (UN, 2015), completará 50 anos de vigência em 6 de março de 2020[1]. Pelo que nele foi acordado, os cinco países membros permanentes do Conselho de Segurança (P5) atribuem-se abusivamente ao direito de continuar a possuir armas nucleares e os demais renunciam a elas e se comprometem a submeter suas instalações e materiais nucleares a inspeções internacionais pela AIEA, podendo sofrer punições se não cumprirem com as determinações do Tratado.

É, sem meias palavras, um tratado de submissão, em assuntos nucleares, dos países não possuidores de armas (NNWS), aos países possuidores de armas nucleares (NWS)[2].

As compensações oferecidas aos não nucleares (NNWS) foram irrisórias, os países nucleares (NWS) apenas se comprometeram a buscar “com boa fé”[3] o desarmamento. Não foi fixado prazo, nem data para alcançá-lo, nem limite para os arsenais e nem ao menos foi assumido o compromisso dos possuidores de armas nucleares de não as usar contra os desarmados. No que concerne ao acesso à tecnologia, as partes se comprometem a compartilhar “da maneira mais completa possível”[4] os equipamentos, materiais e informações científicas e tecnológicas para o uso pacífico da energia nuclear onde a definição do possível é, obviamente, dos fornecedores que, inclusive, criaram posteriormente um “clube” para definir esses critérios[5].

A ausência da promessa do não uso das armas nucleares contra os não nucleares ressalta, ainda mais, a natureza discriminatória do Tratado. A doutrina dos EUA sobre armas nucleares chegou a estabelecer, em 1978, um comprometimento que teoricamente até protegia os desarmados. Ela foi modificada pelo presidente W. Bush no sentido de considerar essa possibilidade de uso, não foi revogada pelo presidente Obama e, recentemente, o atual presidente Trump ampliou o leque de circunstâncias em que poderia ser usado o armamento nuclear (Panda, 2018).

O Brasil, por quase 30 anos, rejeitou o TNP por considerá-lo discriminatório e porque já havia assinado anteriormente (1967) o Tratado de Tlatelolco (Opanal Inf. 14, 2015) no qual renunciava ao uso e posse de armas nucleares. Tlatelolco tem protocolos adicionais, assinados (com algumas ressalvas) pelos países nuclearmente armados e aqueles que têm, de fato ou de direito, possessões na área, que preveem o compromisso de não agressão.

Muitos argumentam, em favor do TNP, que ele teria evitado a repetição da tragédia de novo uso das armas nucleares. Ora, as armas foram usadas quando não havia proliferação e os EUA tinham certeza da não retaliação nuclear o que evitou novas tragédias nucleares, até agora, foi justamente a proliferação inicial para alguns países e o sistema de aliança de proteção entre os integrantes dos dois grandes grupos políticos em que o mundo se dividiu no pós Segunda Guerra Mundial. O equilíbrio pelo terror da mútua aniquilação tornou inviável a guerra em que os dirigentes, na retaguarda, enviavam à frente de batalha seus jovens ao sacrifício, em defesa de suas propriedades e família. Na guerra nuclear elas estariam em perigo imediato.

Quanto aos resultados da não proliferação, pode-se dizer que o Tratado não foi eficaz; o número de possuidores de armas nucleares quase dobrou, sendo agora nove os países nuclearmente armados. A contenção no número de países integrantes do grupo dos nuclearmente armados deve ser muito mais atribuída ao sucesso de programas como o “Átomos para a Paz” que propriamente ao TNP. Este programa, lançado pelo Presidente Eisenhower em 1953, portanto 15 anos antes do TNP, permitiu aos países o acesso a usos pacíficos da energia nuclear sem passar pelo domínio das tecnologias de enriquecimento e reprocessamento que possibilitam a proliferação. Ele serviu ainda para amadurecer o processo de salvaguardas da AIEA que se restringia, nesses casos, aos equipamentos e material nuclear fornecidos.

Ainda sobre o equilíbrio pelo terror, os acordos de proteção tipo “guarda-chuva”, em que uma potência nuclear assegurava proteção nuclear a alguns países diretamente ameaçados, também evitou que houvesse a proliferação nesses países. Japão e Alemanha, são exemplos de países em que a proliferação de armas nucleares foi, até hoje, assim evitada.

As iniciativas bilaterais de redução e limitação de armas também obedeceram a esse temor da destruição mútua criado pela ameaça nuclear. Durante algum tempo, essas iniciativas propiciaram algum alívio à população mundial. Elas foram apresentadas como moeda de troca com os NNWS nas revisões do TNP, mas pouco têm a ver com o Tratado já que, em nenhuma delas, foi incluído o estrito controle internacional previsto no Artigo VI do TNP.

Nas condições atuais, os tratados de limitação de armas estão paulatinamente sendo desativados e novos tipos de armas e lançadores estão sendo desenvolvidos pelos nuclearmente armados. Entre as novidades, o aperfeiçoamento de armas táticas, de menor custo e poder de destruição, se encaixa perfeitamente no propósito de uso limitado contra países não possuidores de armas nucleares.

Já nos países que interromperam o processo que poderia levá-los ao armamento nuclear, como Brasil e Argentina, ou que renunciaram a ele, como a África do Sul, o sucesso deve ser atribuído à redução de tensões regionais e ao estabelecimento de zonas livres de armas nucleares. Por uma razão semelhante, mas adotando uma outra linha de raciocínio, a Suécia decidiu abandonar seu programa de armas nucleares defensivas por considerar que declarar-se neutra entre os dois blocos era sua melhor defesa.

A desconfiança da eficácia das salvaguardas do TNP, por outro lado, foi impropriamente usada como motivação para guerras contra o Iraque e a Líbia, com pretexto de eliminação de programas nucleares bélicos- e armas de destruição em massa, mas que tiveram como objeto a posse do petróleo e gás, mesmo motivo de outras tantas guerras. A tensão no Irã tem motivos parecidos, embora a questão nuclear possa estar mais explícita.

No caso de Brasil e Argentina, o êxito do processo de desnuclearização se deu evitando cuidadosamente o TNP. No início dos anos noventa, Brasil e Argentina e, parcialmente o Chile, se engajaram em um processo que incluiu: 1) fazer alterações no Tratado de Tlatelolco para colocá-lo em vigor, 2) assinar um Tratado Bilateral, em Guadalajara no México, onde Brasil e Argentina assumem os mesmos compromissos de não proliferação do TNP e criam uma agência de fiscalização mútua, a ABACC, 3) assinar um acordo dos dois países e ABACC com a AIEA, o Quadripartite, aplicando as mesmas salvaguardas abrangentes do TNP.

Com isso, Brasil e Argentina assumiram os mesmos compromissos do TNP de maneira independente sem reconhecer o monopólio nuclear dos cinco membros do Conselho de Segurança da ONU, os P5. Isto ocorreu pela feliz coincidência, na época, da ocorrência de dois governos civis no Brasil e na Argentina

Foi um primoroso trabalho diplomático e técnico[6] que resultou em um arranjo cujos efeitos práticos eram os mesmos do TNP, sem seu caráter discriminatório. Esse arranjo serve de exemplo, ainda hoje, para outras regiões do mundo interessadas em afastar a ameaça nuclear.

 Em junho de 1997[7] durante o Governo do Presidente Fernando Henrique Cardoso, o Brasil assinou o TNP, estribando-se num dispositivo constitucional que compromete o Brasil ao uso exclusivamente pacífico da energia nuclear. Acontece, que essa determinação constitucional já estava confirmada em compromissos internacionais anteriores que incluíam o mesmo regime de salvaguardas abrangentes aplicadas pela AIEA aos países não nuclearmente armados signatários do TNP. Por outro lado, nada em nossa Constituição nos obriga a legitimar a posse de armas nucleares por outros países e assinar um tratado que o Brasil continuou considerando discriminatórios, mesmo após sua assinatura.

Essa adesão ao Tratado foi feita sem nenhum anúncio público prévio e sem consulta à Sociedade Brasileira. Alegava-se (Jornal Estado de S. Paulo. 21 de junho de 1997) que, isso se fazia em obediência ao dispositivo constitucional e o Brasil facilitaria, com essa assinatura, sua inclusão como membro permanente do Conselho de Segurança. Pura ilusão, como se verificou nos anos seguintes. Hoje a Índia, que na época não admitia a posse de armas nucleares (teria apenas realizado explosões pacíficas), se declarou possuidora de armas nucleares e está muito mais próxima dessa posição permanente no Conselho do que o Brasil.

Para outros países deve-se reconhecer, que o TNP, conjugado com a pressão diplomática e econômica, pode ter contribuído para que não aumentasse, além dos nove, o número de países armados.

 No caso de Brasil-Argentina, na nossa opinião, não vale a pena, a esta altura, romper com o TNP. Estaríamos dando um sinal equivocado quanto à nossa firme intenção de uso somente pacífico da energia nuclear que, no caso do Brasil, está registrado na constituição. Também não há razão de comemorar seu cinquentenário.

Na próxima conferência de revisão do Tratado, entre 27 de abril e 22 de maio de 2020, devemos insistir no cumprimento de suas cláusulas de desarmamento. Não faz também sentido a pretendida prorrogação indefinida sem que as nações nuclearmente armadas apresentem um plano verificável e com horizonte definido de alcançar o desarmamento. Não é aceitável que a Assembleia Geral da ONU conceda a cinco países a permissão, por tempo indeterminado, de manter um arsenal capaz de destruir a Humanidade.

Um fato importante na questão das possíveis modificações do TNP é que “qualquer emenda a este Tratado deverá ser aprovada pela maioria dos votos de todas as Partes do Tratado, incluindo os votos de todos os Estados nuclearmente armados Partes do Tratado e os votos de todas as outras Partes que, na data em que a emenda foi circulada, sejam membros da Junta de Governadores da Agência Internacional de Energia Atômica. (tradução oficial do Artigo VIII §2 do TNP)[8]. Ou seja, o Brasil, enquanto membro da Junta de Governadores, tem uma espécie de poder de veto sobre as emendas do Tratado. Com efeito, este parágrafo estabelece que qualquer emenda, além de precisar de ser aprovada pela maioria dos votos da Assembleia Geral, tem que incluir a aprovação de todos os membros da Junta de Governadores. Isso já inclui os NWS, mesmo que não fosse explicitado, no Artigo, e alguns os outros países.

Ou seja, talvez a única vantagem que o Brasil teve em assinar o TNP é que ele passou a ter uma espécie de “poder de veto” sobre as modificações do Tratado, devido à sua condição de membro da Junta de Governadores da AIEA.

O Brasil não é, no entanto, membro permanente da Junta de Governadores, embora a integre desde sua criação. Segundo o Prof. José Israel Vargas (Vargas, 2007)  o Brasil teve sua posição permanente na Junta de Governadores da AIEA contestada pelos EUA que queria a alternância de Brasil e Argentina nessa representação. Ainda segundo o Prof. Vargas[9], o Brasil acabou renunciando à vaga reservada ao país mais avançado na região, quando parecia estar assegurada sua eleição pelo voto, em virtude de instrução do embaixador Santiago Dantas, na época Ministro de Relações Exteriores do governo João Goulart. A decisão envolveu a adoção de um sistema de rodízio entre Brasil e Argentina no posto reservado ao país com maior desenvolvimento na região que ocupa uma vaga das seis reservadas à América Latina, dentro do sistema de proporcionalidade da ONU. O Brasil e Argentina se alternam em uma das vagas preenchidas por eleição entre os países da Região. Isto, segundo o embaixador Laércio Vinhas, é determinado por um “acordo de cavalheiros” entre os países da região[10] na década de sessenta. Os outros disputam, a partir daí, as restantes quatro vagas. Neste arranjo, Brasil e Argentina vêm assegurando sua presença na Junta, o Brasil desde o início e a Argentina desde 1961.

Em todo caso, a presença do Brasil na Junta de Governadores não é uma posição que o País possa abrir mão. Também é importante que não se aceite a imposição de dificuldades adicionais ao direito de cada parte de retirar-se do Tratado. Este tipo de proposição, na verdade, já existe e tornaria praticamente irreversível a adoção do TNP; assim como existem propostas de tornar obrigatórias as salvaguardas ampliadas no modelo do Protocolo Adicional que o Brasil, com muita razão, se recusa a assinar[11].

No entanto, mesmo que um país não tenha esse direito de veto, ele não pode ser obrigado a aceitar uma cláusula do novo contrato que não foi pactuada por ele. Isto poderia justificar, inclusive, sua retirada do Tratado. Com efeito, o artigo X §1 prevê a denúncia do Tratado face a “acontecimentos extraordinários, relacionados a esse Tratado, que ponham em risco seus interesses supremos”. É claro que a retirada de um país do TNP não é, na prática, um ato sem consequências como deveria ser o simples exercício de um direito assegurado no Tratado.

Pode-se pensar que uma emenda ao TNP que modifique substancialmente a obrigação das partes deveria requerer uma aprovação de cada país para ser nele colocada em vigor. O Tratado não prevê essa possibilidade e isso teria que ser expresso com a denúncia do Tratado pelo país já que não está prevista a possibilidade da versão antiga do Tratado continuar em vigor para o Estado Membro que não concorde com a modificação.

.

A Conveniência de Ratificar o TPAN

O Brasil propôs e assinou, em 2017, o Tratado sobre a Proibição de Armas Nucleares – TPAN. É um tratado no qual o Brasil e os demais signatários assumem os mesmos compromissos do TNP de forma unilateral e deixam aos demais países a oportunidade de aderir ao Tratado, inclusive os armados. O TPAN deixa ainda mais clara a vedação a qualquer país de manter ou receber armas nucleares em seus territórios. Esta proibição, na verdade, já existe no TNP, mas tem sido sistematicamente violada pelos países nuclearmente armados, mormente os EUA[12], que mantém atualmente armas nucleares na Alemanha, Bélgica, Países Baixos, Turquia e Itália (Kristensen, 2019), pelo menos, sem mencionar a forma que é operacionalizado o “guarda-chuva” nuclear americano para a proteção de Coreia e Japão[13]. Isto apesar do compromisso dos NWS (artigo I)[14] de não transferir armas nucleares ou outros dispositivos nucleares explosivos para outros receptores. As armas da antiga União Soviética foram, aparentemente, desativadas ou transferidas para Rússia e não constam mais da listagem de organizações que se encarregam de fornecer as informações existentes sobre armamentos nucleares.

Enquanto isso, devemos ratificar o Tratado sobre a Proibição de Armas Nucleares – TPAN (UN, 2017) e trabalhar por sua colocação em vigor pelos outros países. O Brasil liderou, juntamente com África do Sul, Áustria, Irlanda, México e Nigéria, o processo que resultou em sua aprovação pela Assembleia Geral das Nações Unidas por 122 votos a favor com um voto contra (Países Baixos) e uma abstenção (Singapura) em agosto de 2017. Significativamente, os países possuidores ou hospedeiros de armas nucleares se negaram a participar da Assembleia, com exceção dos Países Baixos (Holanda). Sessenta e nove países, entre os quais os países nucleares e seus aliados da OTAN não compareceram. Essa posição é justificada por uma pretensa oposição do TPAN ao regime TNP. Na verdade, o TPAN, tecnicamente, não se opõe em nada ao TNP já que os signatários assumem todos os compromissos contidos no TNP. A diferença fundamental é que os signatários não reconhecem a posição privilegiada dos integrantes do P5 nem a dos que dão permissão de instalação de armas nucleares em seus territórios.

O Presidente Temer, comparecendo à cerimônia de assinatura, tendo sido o primeiro a firmar o Tratado, reforçou a importância da iniciativa. O TPAN deve ainda ser ratificado pelo Congresso. O Brasil, inclusive, recebeu um prêmio da Associação pelo Controle de Armas por sua liderança no processo[15].

Em nota na ocasião da Assinatura do Tratado, o Itamaraty afirmou que “A comunidade internacional já baniu as outras armas de destruição em massa, químicas e biológicas. Não há motivo para não buscar proibir, igualmente, as armas com maior poder destrutivo, capazes de exterminar a vida na Terra”.

O TPAN não acrescenta nenhum novo compromisso aos países não nucleares membros do TNP e, no caso do Brasil e Argentina, àqueles que já são objeto do Acordo Bilateral. Ele apenas reforça a determinação da Sociedade Brasileira, estabelecida na nossa Constituição Federal, de usar a energia nuclear apenas para fins pacíficos.

Sua desejada ratificação será a reafirmação da posição brasileira de liderança na defesa desse princípio e do amplo direito dos países ao uso da tecnologia nuclear para fins pacíficos, incluída a propulsão naval.

O TPAN não se opõe ao TNP, tem a vantagem de não ser discriminatório e cria uma maior pressão pelo desarmamento. A razão da oposição que ele hoje enfrenta não pode ser associada à atual redação do TNP, mas a novas cláusulas ainda mais restritivas que os países direta ou indiretamente protegidos pelas armas nucleares queiram impor, nas revisões periódicas do TNP, aos países não nuclearmente armados. Esta é mais uma razão para que o Congresso Brasileiro acelere os procedimentos de ratificação do TPAN.

 

Abreviaturas

ABACC – Agência Brasileiro-Argentina de Contabilidade e Controle de AIEA – Agência Internacional de Energia Atômica

EUA – Estados Unidos da América,

FHC – Abreviatura do nome do Presidente Fernando Henrique Cardoso

NSG – Nuclear SuppliersGroupgrupo de países supridores (de equipamentps) nucleares,

Materiais Nucleares,

NWS – Países reconhecidos como possuidores de armas nucleares,

NNWS – Países não possuidores de armas Nucleares, no âmbito do TNP,

ONU – Organização das Nações Unidas,

OPANAL – Organismo para a Proscrição das Armas Nucleares na América Latina e no Caribe

OTAN – Organização do Tratado do Atlântico Norte,

P5 – Grupo de países integrantes permanentes do Conselho de Segurança, com direito a veto e reconhecidos como possuidores de armas nucleares pelo TNP,

TNP –(em inglês NPT) Tratado de Não Proliferação Nuclear,

TPAN – (em inglês, TPNW) Tratado sobre a Proibição de Armas Nucleares,

Tlatelolco – Nome da região mexicana onde foi assinado o Tratado para a proscrição das Armas Nucleares na América Latina e no Caribe, Tratado de Tlatelolco.

 

 

Bibliografia

Kristensen, H. M. (29 de apiril de 2019). United States nuclear forces, 2019. Bulletin of the Atomic Scientists 75:3, pp. 122-134.

Opanal Inf. 14. (2015). Tratado de Tlatelolco. Fonte: OPANAL: http://www.opanal.org/wp-content/uploads/2015/08/Tratado-Tlatelolco_port.pdf

Panda, A. (17 de july de 2018). No First Use’ and Nuclear Weapons. Acesso em dec de 2019, disponível em Foreign Affairs: https://www.cfr.org/backgrounder/no-first-use-and-nuclear-weapons

  1. (2015). Non-Proliferatopn of Nuclear Weapons – Text or Treaty. Fonte: 2015 Review Conference of NPT: https://www.un.org/en/conf/npt/2015/pdf/text%20of%20the%20treaty.pdf
  2. (july de 2017). Treaty on the Prohibition on Nuclear Weapons. Fonte: United Nations conference to negociate a legally binding instrument to prohibit nuclear weapons leading towards teir total elimination,: https://undocs.org/A/CONF.229/2017/8

Vargas, J. I. (2007). Ciência em tempo de crise 1974-2007. Belo Horizonte: Editora UFMG.

 

 

[1] O TNP foi assinado em 1º de julho de 1968, mas só entrou em vigor em 1970, em 2018 foi comemorado o cinquentenário de sua assinatura.

[2]NWS, Nuclear Weapons States e NNWS Non-Nuclear Weapons States.

[3] Article VI “Each of the Parties to the Treaty undertakes to pursue negotiations in good faith on effective measures relating to cessation of the nuclear arms race at an early date and to nuclear disarmament, and on a treaty on general and complete disarmament under strict and effective international control.”Tradução oficial: Cada Parte deste Tratado compromete-se a entabular, de boa fé, negociações sobre medidas efetivas para a cessação em data próxima da corrida armamentista nuclear e para o desarmamento nuclear, e sobre um Tratado de desarmamento geral e completo, sob estrito e eficaz controle internacional.

[4] All the Parties to the Treaty undertake to facilitate, and have the right to participate’«in,the fullest possible exchange of equipment, materials and scientific and technological information for the peaceful uses of nuclear energy.(Article V §2)

Tradução oficial: Todas as partes deste Tratado comprometem-se a facilitar o mais amplo intercâmbio possível de equipamento, materiais e informação científica e tecnológica sobre a utilização pacífica da energia nuclear e dele tem o direito de participar.

[5] O chamado Clube de Londres, deu origem ao Nuclear SuppliersGroup – NSG, o grupo reuniu inicialmente os P5 + Canadá e Alemanha Ocidental e, paulatinamente, se estendeu a outros supridores, inclusive o Brasil. Controla a exportação não só de equipamentos de usos nucleares, mas também de usos duais.

[6] O Acordo Bilateral Brasil-Argentina é pioneiro ao proscrever o uso de explosões pacíficas que até hoje é permitido no TNP a países não nuclearmente armados por intermédio dos armados, trata de forma conveniente a preservação do direito ao uso de tecnologias para usos pacíficos da energia nuclear e resguarda a posição histórica dos dois países contra medidas discriminatórias.

[7] Ratificação em 18 de setembro 1998 http://www.planalto.gov.br/ccivil_03/decreto/D2864.htm

[8]Any amendment to this Treaty must be approved by a majority of the votes of all the Parties to the Treaty, including the votes of all nuclear-weapon States Party to the Treaty and all other Parties which, on the date the amendment is circulated, are members of the Board of Governors of the International Atomic Energy Agency.

[9].O Brasil fazia parte do grupo dos países mais adiantados, “devido a sua participação ativa e independente, bem como seu grau desenvolvimento, desde os primórdios da era nuclear. Nosso País, entretanto, teve contestada pelos Estados Unidos sua condição de país mais avançado da região: o governo doe EUA propôs que nossa participação na (Junta da) AIEA fosse alternada com a Argentina. Para isso designou um Comitê de três membros, presidida pelo físico Gunnar Randers para ouvir as delegações” dos dois países. Ele integrava a brasileira, chefiada pelo Prof. Marcelo Damy de Souza Santos e a delegação argentina era chefiada pelo Alte. Quihullait. “Como era fácil prever, a comissão técnica não chegou a qualquer resultado devolvendo o assunto à Junta. Segundo o regulamento da Agência, a decisão seria obtida através de votação. A avaliação dos votos sugeria provável vitória do Brasil, que, no entanto, foi impedida de realizar-se pela renúncia de nossa candidatura”.

[10]Relatório de Gestão Missão Permanente do Brasil junto à Agência Internacional de Energia Atômica, em Viena, Embaixador Laercio Antonio VinhasDOC-Anexo-20160905legis.senado.leg.br › sdleg-getter › documento: “Órgão de decisão política da AIEA, a Junta de Governadores da AIEA é integrada por 35 Estados Membros, que são eleitos ou designados. Estes últimos são escolhidos segundo critérios estabelecidos no Estatuto da AIEA com base no seu nível de desenvolvimento nacional na área nuclear. Desse modo, os países mais desenvolvidos nesse campo estão sempre presentes na Junta como designados. Com base em “acordo de cavalheiros” a que chegaram com os países de nossa região no início da década de 1960, Brasil e Argentina, os dois países com os programas nucleares mais desenvolvidos na América Latina e Caribe, integram a Junta de Governadores ininterruptamente (o Brasil desde a criação da Agência, e a Argentina a partir de 1961). Cada um dos dois países integra o órgão por dois anos como membro designado e, no biênio seguinte, como eleito. Outros países da região são eleitos para as demais quatro vagas correspondentes à região, com mandatos de dois anos.

[11]Ver, por exemplo proposta do Vice-Presidente do Geneva International Peace Research Instituteem http://ceness-russia.org/data/page/p301_1.pdf

[12] Os membros da OTAN, usando argumentos técnicos sobre o efetivo controle das armas nucleares contestam essa violação com interpretações do conceito de transferência, como por exemplo, em https://web.archive.org/web/20150128114502/http://www.opanal.org/Articles/cancun/can-Donnelly.htm

[13] A respeito da situação na Coreia ver A desnuclearização das Coreias (Feu Alvim, C.; Mafra, O. e Vargas, J. I.)  http://eee.org.br/?page_id=2361

[14] Article I Each nuclear-weapon State Party to the Treaty undertakes not to transfer to any recipient whatsoever nuclear weapons or other nuclear explosive devices or control over such weapons or explosive devices directly, or indirectly; and not in any way to assist, encourage, or induce any non-nuclear-weapon State to manufacture or otherwise acquire nuclear weapons or other nuclear explosive devices, or control over such weapons or explosive devices.

[15] A “Arms Control Association” (ACA) agraciou as delegações de desarmamento do Brasil, África do Sul, Áustria, Irlanda, México e Nova Zelândia e a embaixadora ElayneWhyte Gómez (Costa Rica) com o prêmio “Arms Control Persons of theYear” pela liderança nas negociações que levaram à adoção do Tratado para a Proibição de Armas Nucleares (TPAN).http://www.itamaraty.gov.br/pt-BR/notas-a-imprensa/18175-premio-concedido-ao-brasil-pela-associacao-de-controle-de-armas

Sistema Elétrico e Energia Nuclear


Economia e Energia Ano XXIII  Nº 102, Janeiro a Março de 2019
ISSN 1518-2932   

Disponível em: http://ecen.com.br e http://ecen.com

Opinião:

SISTEMA ELÉTRICO E ENERGIA NUCLEAR NO BRASIL

Othon Pinheiro da Silva,Olga Mafra e Carlos Feu Alvim

Resumo

A energia nuclear é a mais recente das fontes energéticas que utiliza a humanidade e está completando oitenta anos.

Sua utilização inicial foi bélica e isto marcou seu futuro. Sua utilização pacífica na geração de energia nuclear se dá principalmente na geração elétrica, mas é também muito relevante o uso de isótopos na medicina. A energia nuclear é hoje reconhecida como caminho eficaz para reduzir a emissão de gases de efeito estufa. Na matriz energética brasileira, ela tem a participação de 3% e permanecerá com uma participação minoritária na matriz energética brasileira nas próximas 3 décadas.

A abertura econômica dos anos de 1990 tentou reorganizar o sistema elétrico de maneira a admitir a maior participação do capital privado e, forçada pelo “apagão de 2001”, incorporou novas fontes de na geração de eletricidade. O sistema adotado, com forte influência do exemplo termoelétrico britânico, apresentou problemas que precisam ser equacionados levando melhor em conta suas características próprias e sua complexidade econômica, geográfica e climática. A impossibilidade construir grandes reservatórios incluiu a energia hídrica entre as fontes sujeitas aos caprichos da natureza como a eólica, solar e biomassa,.

A solução dessas complexidades demanda uma reforma do sistema elétrico que necessita de energia estável de base, onde a nuclear deve colaborar e também para cobrir as oscilações do sistema com melhor uso dos reservatórios e o ocasional uso de fontes térmicas.

Palavras chave:

Sistema elétrico, energia nuclear, geração de eletricidade, gestão, clima.

_________________________

1.    Energia Nuclear: Explosão Inicial

A energia nuclear é a mais recente entre as fontes disponíveis de energia utilizadas pela humanidade. A descoberta da fissão nuclear ocorreu em 1938/1939 quando Otto Hahn submeteu e publicou seus resultados experimentais e Lise Meitner e Otto Frish completaram a interpretação dos experimentos de Otto Hahn (Atomic Archive). A energia nuclear está, portanto, completando 80 anos de idade[1].

Como a descoberta da fissão nuclear coincidiu com o início da Segunda Guerra mundial, sua primeira aplicação foi bélica. A humanidade tomou conhecimento da energia nuclear em 1945 com os holocaustos de Hiroshima e Nagasaki que provocam até hoje, no ideário popular, natural rejeição a esta fonte de energia.

Ao terminar a Segunda Guerra Mundial, teve inicio a geopolítica bipolar onde o mundo foi dividido em dois grandes blocos, o Ocidental liderado pelos Estados Unidos e o Bloco Soviético liderado pela então União Soviética (cuja sucessora é a Rússia).

A ONU foi criada em 1945 e os cinco países, considerados os vencedores da Segunda Grande Guerra Mundial, EUA, União Soviética, Reino Unido, França e China, ocuparam os lugares permanentes no Conselho de Segurança da ONU, tendo poder de veto. Não por coincidência, estes mesmos países foram os primeiros a se juntar ao “Clube Nuclear”, entre 1949 e 1964[2]. A China foi, até 1971, representada pelo governo nacionalista de Taiwan. A partir daquele ano, a Resolução 2758 (UN, 1971) da Assembleia Geral da ONU estabeleceu a República Popular da China como representante daquele país na ONU e no Conselho de Segurança.

Foi estabelecida uma corrida armamentista, entre estes dois grandes blocos, que priorizava a fabricação de bombas atômicas e mísseis de longo alcance para transportar as ogivas nucleares. Na década de 1950, as bombas nucleares tiveram sua capacidade de destruição “exponenciada” com o desenvolvimento das bombas nucleares que usam a fusão nuclear (comumente conhecida como Bomba H, de hidrogênio). A corrida armamentista continuou crescendo até que ambos os blocos entenderam o conceito MAD – Mutual Assured Destruction (destruição mutua assegurada). Acordos entre as duas maiores potências e o fim da Guerra Fria levaram a uma sensível redução das ogivas nucleares e a quantidade delas diminuiu. Atualmente, o número está estável, mas ainda foi mantido um considerável estoque mundial de bombas [3].

Os cinco componentes do “Clube Nuclear” são membros permanentes do Conselho de Segurança e cada uma das cinco potências tem a prerrogativa de vetar as resoluções da ONU. Posteriormente, Israel (veladamente), Índia, Paquistão e Coreia do Norte agregaram armas atômicas aos seus arsenais, mas sem adquirir o “status” de “nuclear weapon states” no Tratado de Não Proliferação Nuclear – TNP ou de membro do Conselho de Segurança da ONU.

Figura 1: Evolução das ogivas nucleares nos EUA.

Em 1965, o estoque de armas nucleares nos EUA havia superado as 30.000 ogivas, logo após a crise dos mísseis em Cuba (Figura 1). A partir daí, houve uma gradual redução dos arsenais, tanto dos EUA como da União Soviética, com acordos de desarmamento a partir de 1991. Seguiu-se a dissolução da União Soviética e os estoques de armas nucleares se estabilizaram a partir de 2010. Sabe-se menos a respeito da evolução dos estoques da extinta União Soviética. Rússia e EUA teriam, em 2018, um arsenal um pouco superior a 6.500 ogivas cada (Arms Control Association, 2018).

2.    Energia Nuclear para Gerar Eletricidade

Já no início dos anos sessenta, com o início do arrefecimento da grande corrida armamentista bipolar mundial houve mais espaço para aplicações pacíficas. Surgiram usinas nucleares incorporadas à rede de distribuição. As primeiras parecem ser a de Obninsky APS-1 que em 1954 teria se conectado, com 5 MW, à rede, a de Sellafield (Calder Hall) no Reino Unido, que iniciou seu funcionamento em 1956 com capacidade inicial de 50 MW, depois aumentada para cerca de 200 MW (European Nuclear Society), e que seria também a primeira a ser descomissionada  (Brawn, 2003) e a Shipping Port Atomic Power com 60 MWe da Duquesne Light Company  (Craddock III, 2016) nos Estados Unidos que, de acordo com a US Nuclear Regulatory Comission, foi a primeira projetada para uso comercial, tornando-se operacional em 1957.

A partir de 1962, a tecnologia nuclear começou a ter sua utilização ampliada na geração de energia elétrica e se iniciou um período de grande euforia, denominado por Weinberg como a “primeira era nuclear” (Alvin, 1997) onde inicialmente havia a utopia de que seria possível produzir grandes quantidades de energia elétrica a preços ridiculamente baixos com a fonte nuclear. No final da década de 1960, iniciou-se a conscientização da realidade dos preços.

O incidente ocorrido na usina de Three Mile Island, dia 28 de Março de 1979, em Harrisburg Pensilvânia nos Estados Unidos, embora não tenha causado praticamente nenhum dano humano ou material, serviu de alerta para o que deveria ser aprimorado nos conceitos de operação e segurança das usinas nucleares. Esse alerta provocou modificações em todas as usinas nucleares que usavam reatores tipo PWR – Pressurized Water Reactor, aumentando sua segurança.

Entretanto já existiam outras usinas nucleares com reatores de tecnologia menos segura como os reatores RMBK de Chernobyl, Ucrânia e também usinas em cuja instalação não haviam sido respeitadas as boas normas internacionais de segurança em sua localização, particularmente, na sua cota de posicionamento em relação ao nível do mar como ocorreu em algumas das usinas BWR- Boiling Water Reactor , que foram construídas na Central Nuclear de Fukushima, Japão. Uma descrição do ocorrido foi publicada pela AIEA (AIEA, 2015).

As usinas da Central Nuclear Fukushima foram construídas em uma cota baixa relativa ao nível do mar. A cota do protetor marinho foi fixada em 5,5 m a partir de avaliações disponíveis na época. Uma reavaliação do órgão superior que cuida de terremotos no Japão, anterior aos eventos, modificou para cima o nível de terremoto que poderia ser esperado na região bem como a altura da onda do Tsunami. A Tokyo Electric Power Company – TEPCO, proprietária da Central, não mudou as especificações das usinas nem foi forçada a isto pelo órgão regulador nuclear japonês. Com isso, a cota da usina era inferior à altura para resistir à onda máxima prevista na reavaliação. A previsão dessa reavaliação estava próxima da que realmente atingiu a Central (cerca de 10m) .

As instalações diesel, geradoras de energia em emergência, existem em todas as usinas nucleares, para prover a energia elétrica necessária para operar o sistema de remoção do calor residual no combustível dos reatores nucleares, após o seu desligamento. Em Fukushima, em virtude de insuficiente altura em relação ao nível do mar, estas instalações, auxiliares porem muito importantes, foram alagadas pela onda causada pelo tsunami e ficaram inoperantes.

O não funcionamento do sistema de remoção do calor residual levou a fusão de alguns dos núcleos dos reatores da Central. Todas as usinas nucleares são dotadas de sensores de vibração e acelerômetros que provocam a interrupção do funcionamento e desligamento das usinas quando ocorrem terremotos mesmo de baixa intensidade.

A analise posterior da central de Fukushima indicou que suas usinas, sob o ponto da integridade das suas estruturas, tubulações e equipamentos resistiram bem ao terremoto que foi maior do que o terremoto com as características para o quais foram projetadas. A Central Nuclear de Fukushima se encontra localizada a pouco mais de noventa milhas náuticas do encontro de três placas tectônicas que transforma aquela região em um dos locais mais instáveis sob o ponto de vista da sismologia e, por via de consequência, muito sujeita a grandes terremotos e tsunamis. O acidente evidenciou o posicionamento das instalações diesel geradoras de emergência em altura insuficiente em relação ao nível do mar. Não foram devidamente consideradas, no projeto, as peculiaridades locais causadas pela proximidade do encontro de placas tectônicas.

À inoperância dos geradores de emergência á diesel (só um, da unidade 6, não foi atingido) e das baterias de emergência, em 3 delas, provocaram os piores acidentes (derretimento do elemento combustível e vazamento do vaso de contenção). Deve-se notar que não houve vazamento significativo de plutônio como no caso do acidente de Chernobyl. Isso pode contribuir para tornar possível a recuperação, no médio prazo, de boa parte da área atingida.

3.    Energia Núcleo Elétrica no Brasil

A decisão brasileira, no inicio da década 1970, de construir a Usina Nuclear Angra 1 e posteriormente a decisão de assinar o Acordo Nuclear Brasil Alemanha em 1975, não foi bem assimilada pelo setor elétrico de então que naturalmente tinha cultura fortemente hidrelétrica pelo fato desta fonte, até então, atender perfeitamente às necessidades de demanda de energia elétrica brasileiras.

Em decorrência do Acordo Nuclear Brasil Alemanha, de 1975, foi programada a construção de mais duas usinas em Angra dos Reis (2 e 3) e ainda a construção de mais duas usinas no litoral sul do Estado de São Paulo.

Naquela época, a opção nuclear se constituiu numa decisão de cúpula em um regime de exceção, ainda inspirada na utopia de produção de energia elétrica a preços muito baixos. A influência de fatores ligados à geopolítica foi também fator importante. A crise mundial causada pelo grande aumento do preço do petróleo em 1973 foi utilizada como motivadora da decisão.

4.    A Tradição Hidroelétrica

A determinação governamental, na década de 1970, de incorporar energia nuclear ao sistema elétrico foi imposta ao setor elétrico em paralelo com um grande programa de construção de hidrelétricas já em curso. Este, embora contasse com a aprovação do setor elétrico, teve seu dimensionamento decidido no mesmo regime verticalizado de decisão. Esse programa hidroelétrico previa o aproveitamento de praticamente todas as possibilidades de construção de hidrelétricas nos rios situados na região que se estende do Vale do Rio São Francisco até Itaipu. Foram grandes os investimentos no setor elétrico nesta época, um dos setores que mais recebeu investimentos no Brasil. O grande crescimento anual do PIB – Produto Interno Bruto naquele período e a atratividade político/empresarial das obras foram estimuladores deste grande investimento setorial.

A região acima mencionada era muito convidativa para construção de hidrelétricas, pois é geologicamente estável, localizada no meio de uma grande placa tectônica, dotada de oportunidades de aproveitamentos hidrelétricos em locais que já haviam sido desmatados em função de ciclos agrícolas e apresentava topografia que permitia a construção de reservatórios com grande capacidade de armazenamento de água. Esta região apresentava um conjunto de características favoráveis à construção e operação de hidrelétricas raramente encontradas em outros locais do nosso planeta.

Na década anterior (de 1960) o sistema elétrico nacional havia sido padronizado em corrente alternada com sessenta ciclos por segundo. Até então, a região de Minas Gerais, São Paulo e Paraná operavam com sessenta ciclos enquanto o Rio de Janeiro operava com cinquenta ciclos. A padronização da ciclagem facilitou a integração do sistema elétrico nacional onde as maiores fontes geradoras, as hidrelétricas, têm suas localizações definidas pela natureza e não pelo homem.

Ao longo da década de 1980, as hidrelétricas atendiam plenamente a demanda de eletricidade. O estoque de água nos reservatórios dessas usinas complementava o fornecimento de água necessário ao funcionamento satisfatório das turbinas em todas as ocasiões. Isso acontecia, tanto nos meses do ano em que as vazões dos rios eram menores do que a demanda de energia elétrica, como nos ciclos pluviométricos de seca na região central do Brasil, onde estão localizadas as nascentes, e os rios que alimentam grande parte do sistema hidrelétrico nacional.

Nas décadas de 1980 e 1990, as hidrelétricas que haviam sido construídas depois do racionamento na década de 1960 continuaram satisfazendo à demanda de eletricidade, mesmo nos anos mais secos dos ciclos pluviométricos plurianuais que, historicamente, parecem se repetir com a periodicidade de cerca de dez a doze anos aproximadamente.

A partir da segunda metade da década de 1980, o sistema elétrico começou a apresentar problemas em termos administrativos e gerenciais. Havia inadimplência de uma estatal em relação à outra e muita interferência do setor político. É emblemático o desafio do Governador Orestes Quércia de São Paulo ao Presidente de Furnas (e anteriormente Ministro) Dr. Camilo Pena: Face à inadimplência por parte do Estado de São Paulo, o Governador tranquilamente desafiou o Presidente de Furnas sugerindo, ironicamente, “desligar São Paulo”. O assunto foi afinal resolvido pela interferência de pessoas sensatas.

Em alguns Estados da Federação havia empresas estatais estaduais que produziam, transmitiam e distribuíam a energia elétrica e também recebiam energia das empresas estatais nacionais pertencentes à ELETROBRAS. Não havia a separação administrativa empresarial entre a produção de energia por atacado nas hidroelétricas, a transmissão (o transporte a distância da energia) e a distribuição ao utilizador final, ou seja, o varejo. A influência político partidária cresceu demais e passou a comprometer o funcionamento de todo o sistema.

5.    A Reforma do Sistema Elétrico dos Anos 1990

Na década de 1990, estava evidente a necessidade de reformatação administrativa gerencial do sistema elétrico nacional e a economia brasileira foi atingida por uma onda de liberalismo. Foi contratada então a participação de uma empresa consultora do Reino Unido para tratar da reformulação e regulamentação do sistema elétrico nacional. O sistema elétrico Inglês, ao qual os consultores estavam acostumados, era prevalentemente térmico e com características completamente diferentes do sistema brasileiro. Na reestruturação, pós Margaret Thatcher, do sistema elétrico do Reino Unido em 1983 foi introduzido na regulamentação o conceito de competição e houve grande privatização das empresas participantes do fornecimento da energia elétrica produzida e distribuída no Reino Unido.

O sistema elétrico inglês, nos anos noventa, era quase inteiramente termoelétrico e muito dependente da utilização do carvão que estava começando a ser substituído por gás natural. O funcionamento das centrais que utilizam estes combustíveis é bastante independente de ciclos da natureza e praticamente sujeito somente ao planejamento e controle humano. A fonte hídrica representava apenas cerca de 2,5% do total da energia produzida naquele país.

O grupo de consultores ingleses tinha o “DNA” termoelétrico e era, logicamente, orientado pelas ideias de liberalização da economia, privatização e competição. Esta “escola de pensamento” contribuiu para que este “DNA” da onda econômica pós Margareth Thatcher fosse fortemente “miscigenado” na formulação da regulamentação do sistema elétrico brasileiro, majoritariamente hidrelétrico, que necessita compatibilizar o planejamento de sua operação com as variações do sistema pluviométrico controlado pela natureza e não pelo homem como é o sistema térmico do Reino Unido.

Um estudo adequado que fosse realizado por grupo competente e analisasse as características e as peculiaridades do sistema elétrico brasileiro e se preocupasse, não somente, em seguir as regras de comercialização da economia liberal, teria identificado que o estoque máximo de água nos reservatórios das hidrelétricas brasileiras havia se mantido constante desde a década de 1980 enquanto o consumo de energia elétrica naturalmente continuou crescendo e isto certamente repercutiria no planejamento e na operação do sistema elétrico brasileiro, predominantemente hidroelétrico. Ou seja, a reforma implantada nos anos 1990 não peca por seu caráter liberal – cuja discussão é importante, mas está em uma esfera mais ampla – mas por não haver levado devidamente em conta a natureza física do sistema elétrico existente.

Em 2001, o país vivia um período de pouca pluviosidade e os reservatórios das hidrelétricas se encontravam praticamente vazios. O Brasil foi então “surpreendido pelo obvio” e tornou-se necessário o racionamento de energia elétrica que “a mídia” apelidou de “apagão”.

Na realidade o “apagão elétrico” havia sido precedido de um “apagão de competência” ao não se entender, por quase uma década, que o aumento e a transformação do consumo implicariam em modificações compatíveis na produção e na transmissão de eletricidade no Brasil.

A Usina Nuclear Angra 1 havia sido fornecida pela Westinghouse e iniciou seu funcionamento comercial em dezembro de 1984. Infelizmente, principalmente por falhas técnicas de projeto, apresentou baixo nível de desempenho ao longo das décadas de 1980 e 1990. Razões financeiras fizeram com que a Usina Nuclear Angra 2 tivesse desacelerada sua construção e o início da sua operação comercial somente ocorresse em fevereiro de 2001. Estes fatos contribuíram para a descrença dos executivos do sistema elétrico em relação à opção nuclear. Até o inicio do funcionamento comercial da Usina Nuclear Angra 2 o “sistema elétrico” associava energia nuclear unicamente a grandes investimentos e baixo desempenho.

Esse mesmo “sistema elétrico” reconheceu, no entanto, que sem a entrada em funcionamento comercial da Usina Termonuclear Angra 2 com 1300 MW de potência elétrica, no início de 2001, o “apagão elétrico” teria sido ainda maior.

Em consequência do “apagão”, imediatamente foi decidida a construção de termoelétricas que usam como combustível óleo ou gás e que apresentavam menor investimento inicial e menor prazo de construção.

As termelétricas que foram construídas a partir do “apagão” têm contribuído para garantir a continuidade no fornecimento de eletricidade independentemente das variações do regime pluviométrico, mas provocam excessivo aumento do preço médio da eletricidade ofertada ao consumidor, sobretudo porque, ao menos substancial parcela delas tem sido operada continuamente (na base de carga). Desconsidera-se também o aumento da emissão de gases de efeito estufa, ignorando compromissos assumidos internacionalmente pelo País.

A experiência internacional demonstra que termoelétricas para funcionarem continuamente “na base de carga” devem ser preferencialmente termoelétricas convencionais, usando carvão como combustível, ou usinas nucleares. As usinas convencionais a carvão são responsáveis por 38% da energia elétrica produzida no mundo, as térmicas a gás natural representam 23% e o óleo combustível apenas 3%. A contribuição mundial total das usinas hidrelétricas é da mesma ordem de grandeza (16 %) da contribuição da fonte nuclear (10 %) e a das fontes renováveis (8%).

A Figura 2 ilustra a enorme diferença da distribuição das fontes energéticas usadas na geração de energia que, por sua natureza completamente diversa da média mundial, tem que ser administrado de uma maneira também diferente.

 

Óleo

Gás Natural

Carvão

Nuclear

Hidro

Reno-váveis

Outros

Brasil

3%

11%

4%

3%

63%

17%

0%

Mundo

3%

23%

38%

10%

16%

8%

1%

Fonte: BP stats-review-2018-all-data (dados referentes a 2017) (BP, 2018)

Figura 2: Comparação das estruturas de geração de eletricidade no Brasil e no mundo mostrando a peculiar estrutura brasileira,

Embora ainda muito menor do que faz acreditar sua divulgação, tem sido crescente a contribuição da energia renovável, principalmente eólica, mas também solar na produção de energia elétrica no Brasil e no mundo. A energia eólica mais a solar representaram em 2017 8% no mundo e 7,3% no Brasil. É destaque no Brasil a participação da biomassa que representa cerca de 9% da geração elétrica (na Figura 2, incluída entre as renováveis).

O desenvolvimento da tecnologia, com o uso de redes elétricas inteligentes, indica a tendência ao crescimento na utilização da energia eólica e também da energia solar na produção de energia elétrica brasileira, respeitando, evidentemente, suas características de fontes intermitentes e, portanto, dependentes de complementação.

6.    Repensando o Sistema Elétrico

Parece necessário repensar e reestruturar o sistema elétrico brasileiro, fundamentado em práticas comerciais não condizentes com as peculiaridades brasileiras, que atualmente mantém quase as mesmas bases estabelecidas na década de 1990. A revisão do planejamento do sistema elétrico certamente tenderá incorporar os avanços tecnológicos e a maior utilização das redes inteligentes.

Na reestruturação do sistema elétrico brasileiro, as necessárias modificações na operação e comercialização devem ser compatibilizadas com as características das fontes primárias nacionais de produção de eletricidade e também com o tipo de distribuição geográfica e peculiaridades da demanda de energia.

O varejo, ou seja, a distribuição final da energia elétrica em média e baixa tensão ao consumidor, após as subestações rebaixadoras de tensão, é praticamente independente da fonte produtora de energia. Trata-se de atividade administrativa e gerencial muito dinâmica normalmente melhor executada por empresas privadas em regime de concessão. Esta atividade pode ser fracionada para evitar grande concentração de poder em uma única empresa distribuidora em grande área do território nacional.

A lógica pode indicar que as empresas privadas, “responsáveis pelo varejo”, ou seja, pela entrega da energia elétrica ao consumidor final, tenham a sua sede no município embora possam ter como acionistas majoritários empresas “holding” que não tenham sede no município. É desejável que nas empresas distribuidoras municipais de energia uma pequena percentagem de suas ações seja de propriedade de moradores no município e que comprariam e também venderiam suas ações ao “preço de face das ações”. É importante que o representante deste grupo minoritário faça parte do conselho administrativo da empresa municipal. Em caso de “holding” controladora, obrigatoriamente um dos membros do conselho de administração, deveria pertencer a secretaria de energia do estado. A proximidade do entregador da energia com o cliente tende a aprimorar esse atendimento. Um bom exemplo de funcionamento deste sistema é o Município de Belmont no Estado de Massachusetts, Estados Unidos.

A distribuição final da energia por companhia com a sede situada no município contribui para aumentar a renda municipal e diminuir a “exportação” de capital da comunidade utilizadora final de energia para outros lugares.

A prioridade do sistema elétrico nacional certamente deverá ser a garantia e segurança do fornecimento de eletricidade, buscando o menor preço médio do Megawatt-hora (MWh) e a minimização do impacto ambiental.

No planejamento do sistema elétrico é importante considerar que, ressalvada sua grande importância, este setor se constitui um segmento da matriz energética nacional que em seu planejamento deverá levar em consideração a eficiência e economicidade de utilização dos insumos energéticos.

O biênio fundamental dos cursos de engenharia inclui  cursos de termodinâmica que nos ensinam que a transformação de energia química ou térmica em energia mecânica apresenta sempre modesta eficiência. A utilização do gás e derivados de petróleo em aplicações “mais nobres” como são os meios de transporte, por sua portabilidade, na petroquímica, por serem praticamente insubstituíveis, ou no aquecimento direto industrial e domiciliar onde a termodinâmica mostra que a eficiência da transformação da energia química em energia térmica é muito alta.

No planejamento da matriz energética nacional parece lógico priorizar os combustíveis encontrados no território brasileiro e utilizar nas usinas termoelétricas que operam em regime continuo sempre que possível urânio ou até mesmo carvão procurando sempre minimizar o uso de gás e derivados de petróleo para garantir seu emprego em suas aplicações mais nobres ou até mesmo na exportação.

7.    Os três Brasis

É muito importante que haja o entendimento que o Brasil, do ponto de vista do consumo de eletricidade, é um país com 214 milhões de habitantes e dimensões continentais com diferentes regiões climáticas onde convivem na mesma área geográfica total “três Brasis” com características diferentes:

O “primeiro Brasil” é composto de um arquipélago de “ilhas de concentração habitacional e denso consumo de eletricidade”, constituído de (dados de 2017):

  • Duas grandes metrópoles formadas por São Paulo (12 milhões de habitantes e mais 9 milhões com os municípios próximos e vizinhos) e Rio de Janeiro (6,7 milhões de habitantes e mais 2,5 milhões considerando as adjacências).
  • Cinco cidades com mais de dois milhões de habitantes (Salvador – 2,9 milhões, Brasília – 2,85 milhões, Fortaleza 2,57 milhões, Belo Horizonte – 2,94 milhões e Manaus – 2,2 milhões).
  • Dez cidades com mais de um milhão de habitantes (Curitiba -1,86 milhões, Recife – 1,6 milhões, Porto Alegre – 1,47 milhões, Belém – 1,43 milhões, Goiânia – 1,41 milhões, Guarulhos – 1,31 milhões, Campinas – 1,15 milhões, São Luiz – 1,06 milhões, São Gonçalo – 1,0 milhão e Maceió – 1,0milhão).
  • Vinte e cinco cidades com mais de quinhentos mil habitantes.

Este grande “arquipélago brasileiro de centros de denso consumo de eletricidade” demanda “grandes blocos de fornecimento de energia elétrica” que normalmente são produzidos por fontes de alta densidade de produção de energia que são as hidrelétricas, as termoelétricas convencionais e as térmicas nucleares. Uma boa ilustração desse arquipélago é a visão noturna por satélite mostrada na Figura 3. Nela fica clara (embora literalmente escura) a baixa densidade de consumo de grande parte do território nacional e a desigualdade de distribuição do consumo elétrico. Pode-se, inclusive, localizar praticamente todas as “ilhas” acima mencionadas.

Figura 3: Visão noturna mostrando as “ilhas” de iluminação existentes no Brasil e vizinhanças, podendo-se perceber a faixa iluminada ao longo do trópico de Capricórnio (São Paulo, Rio) e a da costa nordestina http://tecnaula.blogspot.com/2011/02/mais-uma-da-serie-um-satelite.html.

Dentro desses grandes centros urbanos de consumo com grande concentração populacional, é possível a utilização apenas complementar da fonte solar (dependendo da insolação do local) considerando que, por sua baixa densidade de produção e intermitência, será sempre uma contribuição percentualmente muito pequena em relação à demanda total de eletricidade destes centros de consumo.

As grandes concentrações populacionais da Zona Franca de Manaus, Santarém e Belém do Pará, embora situadas na Região Amazônica, são servidas pelo sistema elétrico principal e consideradas como pertencentes ao “primeiro Brasil”.

O “segundo Brasil” é constituído pelas cidades médias e pequenas e áreas adjacentes. Este segundo Brasil, embora seja uma “colcha de retalhos” formada de áreas de “media densidade de consumo”, em seu total, consome muita eletricidade. Com menor dificuldade podem aumentar a produção e o consumo das energias alternativas eólicas e solar (dependendo sempre do mapa de ventos e da insolação) pois as redes elétricas existentes são bastante ramificadas e apresentam menor dificuldade de expansão.

O “terceiro Brasil” é composto de grandes áreas, com baixa ou muitíssimo baixa densidade de consumo de eletricidade, situadas nas regiões do sertão do Nordeste e Amazônia. Estas áreas exigem análise e tratamento específico para cada micro região.

As fontes primárias renováveis, eólica e solar, são de baixa densidade na sua “produção” e variam a quantidade de energia produzida durante as vinte quatro horas do dia e com a as condições climáticas, mas têm grande potencial de aplicação no “terceiro Brasil” embora necessitem utilizar o auxilio de estocagem da energia como garantia para assegurar o fornecimento contínuo da energia ao usuário. Quando baterias são utilizadas para estocagem de energia devemos esperar aumento no valor do investimento e também que o descarte das baterias apresente o potencial de grande impacto ambiental.

A região da Bacia Amazônica pode ser interpretada como a composição de áreas com diferentes características: a primeira delas é a área quase plana vizinha da calha principal do Rio Amazonas e também as áreas quase planas próximas onde correm o terço final dos rios afluentes. Nessas áreas planas é pouco praticável o aproveitamento hidrelétrico para suprimento de energia elétrica aos pequenos grupamentos humanos existentes. Cada um desses grupamentos humanos nesta área plana, muito sujeita a alagamentos, exige um tratamento específico. Em sua maioria são grupamentos humanos ribeirinhos, mas sem possibilidade econômica de aproveitamentos hidroelétricos locais.

As áreas não planas da Amazônia onde se encontram os dois terços iniciais do comprimento dos rios tributários contando a partir de suas nascentes, podem ser denominadas de regiões inclinadas/serranas: a primeira região inclinada/serrana está localizada a oeste e noroeste da calha principal plana do Rio Amazonas englobando as a áreas próximas as fronteiras da Bolívia, Peru e Colômbia; a segunda área inclinada/serrana é denominada Região Norte da Bacia Amazônica onde correm os rios próximos as divisas da Venezuela, Guiana, Suriname e Guiana Francesa e seus afluentes; a terceira região inclinada/serrana localizada ao sul é próxima ao planalto central brasileiro. As áreas montanhosas constituem a “borda da bacia amazônica”.

As três grandes áreas inclinadas/serranas juntas compreendem a maior percentagem da área da Amazônia Brasileira. Estas três grandes áreas (Figura 4)[4] apresentam grandes oportunidades de aproveitamentos hidroelétricos principalmente “a fio d’água“ que não provocam grandes alagamentos ou desmatamentos e podem com relativa facilidade suprir as necessidades de eletricidade dos pequenos assentamentos humanos existentes e atividades extrativistas.

Mapa Potencial Elétrico, mostrando as bacias, – Eletrobras (Eletrobras, 2017)

Mapa das Elevações do Brasil (topographic.mapa.com)

Figura 4: Mapas dos rios (ao alto), e de elevações (abaixo) assinalando regiões onde é mais viável o aproveitamento hidroelétrico na Amazônia.

Na região semiárida do “Terceiro Brasil” situada no Nordeste Brasileiro a utilização racional da energia solar e eólica pode muito contribuir para a melhora econômica da região. Ver Mapa da Figura 5 (CEPEL Eletrobras, 2001).

Figura 5: Atlas do Potencial Eólico Brasileiro
CEPEL/MME

Para os grupamentos humanos isolados, onde economicamente não for viável o “back-up” por redes elétricas do sistema elétrico, será necessária a estocagem de energia em baterias ou a utilização de geradores diesel para garantia do suprimento de energia elétrica.

Os grupamentos humanos do “Terceiro Brasil” onde ocasionalmente houver a interligação com as redes do Sistema Integrado Nacional poderão, além do uso das fontes renováveis, utilizar o regime de exportação/importação de energia através de redes inteligentes e utilizando indiretamente o estoque regulatório de água dos reservatórios das hidroelétricas, tornando praticamente desnecessária a estocagem local de energia em baterias para garantir a regularidade do fornecimento de energia elétrica.

Denomina-se “Sistema Integrado Nacional – SIN” o servido pelas grandes linhas de transmissão (Figura 6), as redes de distribuição e seus ramais que atendem ao “Primeiro Brasil”, ”ao Segundo Brasil” e aos centros de consumo por ventura interligados do “Terceiro Brasil”. O SIN tem nas hidroelétricas sua fonte principal de produção de energia. Nota-se na Figura 6 que grande parte do território brasileiro integra esse “Terceiro Brasil” onde o SIN não está presente.

O maior potencial hidrelétrico a ser explorado pelo Brasil se concentra nas áreas da Bacia do Amazonas que não apresentam grandes elevações nem são propícias a reservatórios de grande capacidade. Na concepção atual de desenvolvimento brasileiro, essas usinas se destinam à “exportação” para a região Sudeste-Centro-Oeste SE-CO como já acontece com as usinas instaladas do Rio Madeira e, em grande parte, com a própria energia de Itaipu. Essas usinas chegaram a ser consideradas, para fins de planejamento do SIN, como integrantes da região SE-CO.

Figura 6: Sistema Integrado Nacional – SIN Mapa das Linhas de Transmissão da ONS (ONS)

A introdução de usinas a fio d’água é um grande problema não suficientemente explicitado no nosso planejamento elétrico. No início de 2005, ele foi claramente exposto no artigo “Um Porto de Destino para o Sistema Elétrico Brasileiro” na revista E&E № 49. Na Figura 7, (retirada desse artigo), mostram-se as curvas de energia natural afluente – ENA para as diversas regiões do Brasil que compõem o SIN.  A solução desse problema não é trivial. A regulação sazonal não poderá ser feita com os reservatórios já existentes e o custo da nova energia, com cinco meses do ano com cerca de 10% da capacidade máxima, deverá obrigatoriamente incluir o da energia complementar para o período seco. Esta já é, aliás, a realidade que enfrenta o consumidor que já está pagando um preço diferenciado para cobrir o custo das usinas térmicas que atualmente utilizam óleo ou gás combustível.

Energia Natural Afluente nas Regiões do SIN

Figura 7: A energia natural afluente é governada pela vazão dos rios, na medida que se amplie a participação da Região Norte, com usinas sem reservatórios, a geração elétrica passará a ter forte sazonalidade.  

Soma-se, agora, a oscilação ao longo do dia da energia eólica (atualmente) e futuramente da solar, defasadas da curva diária de consumo. Isso exige das hidroelétricas um excesso de capacidade instalada que encarece seus custos e obriga o uso do estoque regulador.

É primordial a conscientização sobre a importância de considerar a água existente nos reservatórios como estoque regulador de energia. Isso nos conduzirá a utilizar o SIN priorizando a utilização da energia proveniente da região norte nos meses que houver grande caudal e, na medida do possível, estocar água nas hidrelétricas das outras regiões que tenham  capacidade de estocar.

O caudal (vazão) dos rios que alimentam as hidrelétricas (volume de água por segundo) varia ao longo das estações do ano e também com as variações plurianuais dos ciclos hidrológicos. O funcionamento das termoelétricas que consomem biomassa também está sujeito a variações anuais e plurianuais. Torna-se, portanto evidente o conceito de adotar um “estoque regulador de energia” para compensar os períodos em que a energia disponibilizada pelo baixo caudal dos rios e a biomassa disponível seja insuficiente para atender a demanda. O “estoque regulador de energia” é a soma dos estoques de água existentes nos reservatórios das hidroelétricas.

Não existe melhor estoque regulador de energia do que a água nos reservatórios das hidroelétricas. Tal estoque regulador de energia permite atender com simplicidade e presteza as variações na demanda de eletricidade[5].

É desejável também a adoção da estratégia de priorizar no despacho as usinas hidrelétricas à fio d’água e com pequena capacidade de estocar água objetivando sempre maximizar o “estoque regulador de energia” depositado em água nos reservatórios.

As usinas nucleares, se existirem em quantidade suficiente, permitirão ao operador nacional do sistema elétrico gerenciar o sistema de forma que haja sempre o “estoque mínimo necessário regulador de energia” que permita atender as flutuações na demanda de eletricidade mantendo razoável o custo da produção da eletricidade e o baixo impacto ambiental, mesmo nos períodos de baixa pluviosidade. Sabe-se, no entanto, por simulações, que o “cobertor” do estoque nos reservatórios existentes e os possíveis de construir será curto e as térmicas convencionais (óleo, gás natural ou biomassa) deverão ser acionadas para absorver o déficit sazonal ou déficits de chuva plurianuais.  

Parece obvio que a modelagem do sistema elétrico brasileiro para produção, transporte e distribuição de energia e sua comercialização deve ser decidida com base nas peculiaridades brasileiras e não na utilização, sem a devida adaptação, de conceitos “importados” do Reino Unido.  A ideologia de liberalização vem, historicamente, experimentando altos e baixos na economia brasileira. Mesmo respeitando a ideologia liberal (atualmente em alta), é necessário o entendimento do sistema brasileiro e não simplesmente arremedar as práticas comerciais de outro país.

Na composição atual do Operador Nacional do Sistema Elétrico participam representantes das empresas geradoras; o ONS pode, portanto, sofrer grande influência dessas empresas em detrimento do melhor interesse dos consumidores. Seria melhor que fosse um órgão de governo composto de funcionários de carreira trabalhando em sistema aberto tipo bolsa de valores com painéis que demonstrassem suas decisões em plenário onde os representantes das empresas pudessem estar presentes, o que agregaria maior transparência ao sistema.

Os leilões da ANEEL – Agencia Nacional de Energia Elétrica, deveriam ser realizados entre os produtores de energia da mesma fonte energética de produção e não uma competição geral entre fontes diferentes como no sistema atual, de inspiração importada. Para cada fonte primária de produção de energia seriam alocadas cotas de fornecimento de energia que comporiam o “mix”, estrategicamente planejado, para garantir o suprimento de eletricidade ao menor preço médio possível e minimizando o impacto ambiental.

Uma “frase de impacto” de um influente assessor governamental à época da implantação do sistema administrativo gerencial econômico do setor elétrico nacional, que havia participado da elaboração do Programa Computacional New Wave para auxilio nas decisões para operação do sistema elétrico, resume, deste modo, a lógica de prioridade no “despacho” das usinas (fontes) produtoras de eletricidade: “não interessa se trata – se de combustível de cocô de galinha ou fusão nuclear o que interessa é o preço da energia”. Esta frase revela a mentalidade financeira e visão curta de quem entende muito pouco de planejamento energético particularmente em se tratando de um sistema elétrico com as características do Sistema Integrado Nacional. Ela sintetiza a miopia de um gerenciamento focando exclusivamente o aspecto contábil em curto prazo e não o comportamento anual e plurianual do sistema objetivando a segurança do fornecimento e o menor preço médio da energia.

No Brasil, a produção de energia para o atendimento continuo da “base de carga” pode ser entendida como sendo a energia produzida pelas hidroelétricas, usando a média anual do caudal mínimo dos rios que as alimentam, adicionando também a média mínima da energia produzida pelas fontes eólica e solar acrescida pela energia produzida pelas usinas termo- elétricas de menor preço (nucleares e a carvão) operando em produção anual continua . Os picos diários de demanda, ou seja, o “segmento de carga” deve ser prioritariamente atendido com o estoque regulador de energia constituído pela água dos reservatórios. As hidroelétricas têm a capacidade de “seguir a carga” com mais facilidade e economicidade do que as usinas térmicas.

As usinas termoelétricas a gás e óleo são construídas com menor valor de investimento, mas funcionam com o combustível de maior preço resultando em alto preço na energia elétrica produzida. Não é aconselhável que essas usinas operem continuamente ao longo do ano. Quando não estão produzindo energia são remuneradas pelo retorno do investimento acrescido do custo operacional nesta condição e lucro. Quando solicitadas a operar pelo Operador Nacional do Sistema recebem o adicional pela energia efetivamente produzida. É assim, mas isto é vantajoso para quem?

Para funcionar produzindo grandes “blocos de energia” em regime continuo na “base de carga” as usinas térmicas que produzem energia a menor preço por Megawatt-hora são as usinas nucleares e as usinas convencionais que usam carvão como combustível.

O Brasil é prodigo em reservas de urânio e detém a tecnologia de todas as etapas do ciclo combustível nuclear desde a mineração e produção do Yellow Cake até a finalização do elemento combustível para ser usado nos reatores, passando assim por todas as etapas do ciclo do combustível nuclear. Nosso País consta da pequena lista de países que dominam a tecnologia de enriquecimento de urânio e dispõe de grandes reservas de urânio. Somente os Estados Unidos, Rússia e Brasil fazem parte desta pequena lista. Todos os demais países ou dispõem da tecnologia do ciclo do combustível nuclear ou são detentoras de reservas de urânio ou nenhuma das duas condições e pagam por isso quando é compensador.

Países sem grandes fontes de combustível como o Japão e a França dificilmente poderão prescindir da utilização da energia nuclear que pode proporcionar estoque plurianual de combustível a preços competitivos e pequeno volume de armazenamento.

Quando for feita a reformulação correta e competente do sistema elétrico brasileiro ficará evidente a necessidade utilização continua em base de carga das usinas núcleo-elétricas ficando para uso apenas ocasional (quando houver necessidade) as usinas termo elétricas convencionais a óleo e gás para completar a produção de energia em poucos meses do ano. Em virtude do grande investimento necessário, o ritmo de construção das usinas nucleares deve ser compatibilizado com as necessidades de fornecimento de energia em base de carga que assegure a existência do estoque regulador de energia adequado.

O completo entendimento do conceito de utilizar o volume de água nos reservatórios das hidrelétricas no sistema elétrico como “estoque regulador de energia” permitirá minimizar o preço médio da energia elétrica, o impacto ambiental e maximizar o uso das fontes energia renováveis menos poluentes.

8.    O Futuro da Energia Nuclear no Brasil

Deve-se ter em vista que o consumo de eletricidade continuará crescendo e que a situação atual é uma única exceção (em 50 anos) em que repetimos em 2018 o consumo de 2014. O estoque máximo de água nos reservatórios se manteve constante desde o inicio na década de 1990. A melhor forma de garantir o estoque regulador de água é considerar como energia de “Base de Carga Hidroelétrica” o caudal mínimo anual dos rios e usar usinas nucleares que são as termoelétricas de menor preço da energia (comparando-se com as demais termoelétricas) para compor a “base de carga de energia elétrica”. As grandes reservas nacionais de urânio estimulam a adoção desta opção.

A Eletronuclear desenvolveu em parceria com a COPPE, Coordenadoria de Pós-Graduação em Engenharia da Universidade Federal do Rio de Janeiro com a ótica da “segunda era nuclear” um importante estudo de localização para construção de centrais nucleares no Brasil. As conclusões desse estudo foram divulgadas sob a forma de palestras pela Empresa. Tal estudo iniciou-se pela seleção dos locais para construção que atendem a uma extensa lista de requisitos (mais de dois mil) priorizando a segurança nuclear. Foram selecionadas quarenta opções de localização que atendem a todos os requisitos.

Cada central núcleoelétrica planejada neste estudo, ao final de sua construção, teria capacidade para comportar seis usinas nucleares tipo PWR com cerca de 1200 Megawatts que seriam construídas sequencial e paulatinamente. É recomendável que o inicio da construção de cada usina da mesma central seria defasado de cerca de um ano e meio do inicio da construção da usina anterior para otimizar a utilização da mão de obra e minimizar o preço total da construção de cada central.

Considera-se aqui que a decisão sobre a possível implantação dessas centrais seria tomada no planejamento energético global, mas os possíveis locais já estariam determinados.

Naquele estudo, foi feita a opção por usinas dotadas reatores PWR modernos com sistema de segurança passiva aprimorada que não necessitam de energia externa para remoção do calor residual produzido pelos núcleos dos reatores após o desligamento com a interrupção da reação nuclear em cadeia.

O conceito de segurança passiva aprimorada prevê que o calor residual de um reator nuclear depois do desligamento súbito, que no primeiro momento, se constitui em cerca de 2,3% da energia que o reator vinha produzindo antes da interrupção da reação nuclear em cadeia e decresce rapidamente ao longo de quarenta e oito horas para valores mínimos seja absorvido sem a necessidade de existir um sistema independente de remoção de calor que utilize energia elétrica como ocorre na maior parte das usinas nucleares atualmente existentes.

 Os modernos reatores PWR são projetados para que a dissipação desta energia residual produzida pelo núcleo do reator seja realizada por circulação natural por convecção da água no circuito primário da usina tornando-se desnecessária a utilização de energia elétrica de fonte não nuclear externa para assegurar a remoção do calor residual.

Ao término da construção, cada Central Nuclear composta de seis usinas teria a potência total instalada de sete mil e duzentos megawatts e podendo operar com o fator de capacidade de 0,9. Cada uma dessas centrais nucleares, quando dotadas das seis usinas, produziria mais energia do que a soma das energias produzidas pelas hidrelétricas da empresa Furnas ou da empresa CHESF- Centrais Hidrelétricas do São Francisco ou a metade da energia anual gerada pela usina de Itaipu.

A retomada do crescimento econômico brasileiro implicará necessariamente em aumento do consumo de eletricidade e tornará ainda mais evidente a necessidade de aumentar utilização de termoelétricas nucleares na ”base de carga” produzindo “grandes blocos de energia”. Caso seja mantida a atual intensa utilização de usinas termoelétricas convencionais a óleo e gás o alto preço da eletricidade atualmente praticado tenderá a aumentar.

Qualquer nova usina nuclear, prevista para ser construída, deverá ser planejada com a ótica da “segunda era nuclear” que prioriza a segurança e entende a energia nuclear não como sendo “a solução” para produção de eletricidade e sim com uma fonte complementar primária de produção de energia com segurança que não pode deixar de participar de um “mix” de fontes produtoras para assegurar a garantia no fornecimento de eletricidade com economicidade e minimizando os impactos ambientais.

O planejamento da geração nuclear tem que ser parte do programa de longo prazo de geração de energia para o Brasil. A periodicidade atual (planos decenais) é inadequada para isso. Em termos de planejamento energético nacional, dez anos constituem um prazo curto. O ciclo de planejamento e construção de uma instalação de grande porte produtora de energia e linha de transmissão associada é da ordem de dez anos de acordo a pratica internacional e frequentemente um empreendimento de porte escapa ao ciclo de dez anos. O lançamento do plano de longo prazo vem sendo sucessivamente adiado pelo Governo Federal.

Para o importante setor nuclear torna-se necessário:

  1. Terminar a construção da Usina Nuclear Angra 3 da Central Nuclear Álvaro Alberto em Angra do Reis.
  2. Decidir o local da construção de uma ou até mesmo duas centrais nucleares, com a possível brevidade, selecionando sua localização entre as quarenta localizações recomendadas nos estudos realizados pela COPPE e a Eletronuclear que sejam mais convenientes para atender as necessidades do Sistema Integrado Nacional. Com isto, não se perderia o conhecimento acumulado na área por técnicos altamente especializados.
  3. Decidir, a programação da construção das usinas dentro de um planejamento global, idealmente, com o início da construção da primeira central até 2022. É possível custear, ao menos parcialmente, a construção das usinas nucleares com a “venda futura de energia” garantida por acordos de governo, porém mantendo a propriedade e responsabilidade da estatal brasileira pela propriedade, operação e descomissionamento das usinas nucleares[6].
  4. Construir a instalação de armazenamento intermediaria de rejeitos da Central Nuclear Álvaro Alberto e o módulo de demonstração experimental da Instalação para estocagem, em longo prazo, de combustível nuclear queimado. Este novo conceito de estocagem concebido na Eletronuclear permite estocar por mais de quinhentos anos todo o combustível nuclear utilizado em todas as centrais nucleares brasileiras com total segurança e baixo preço, usando a remoção do calor residual por circulação natural e permitindo monitoramento seguro, simples, constante e de baixo custo. Esta solução é tecnologicamente muito mais avançada do que o antigo conceito de deposição dos rejeitos nucleares em grandes profundidades em locais teoricamente considerados estáveis que foi preconizado durante a “primeira era nuclear” e que na realidade significa “colocar o lixo debaixo do tapete”, embora essa concepção ainda conte com grande número de adeptos.
  5. Aprimorar a operação e ampliar as instalações da INB – Indústrias Nucleares do Brasil de forma que em um prazo máximo de dez anos sejam atendidas as necessidades de combustível nuclear para alimentar as usinas nucleares que estiverem em funcionamento no País.
  6. Ampliar a responsabilidade da INB para ser encarregada do transporte e armazenamento do combustível nuclear queimado dos reatores e posteriormente, quando for economicamente recomendável para o Brasil, reprocessar o combustível nuclear queimado[7], e manter a estocagem monitorada dos rejeitos usando o provavelmente as mesmas instalações construídas em região adequada para o armazenamento intermediário, no longo prazo, do combustível nuclear queimado.
  7. A CNEN – Comissão Nacional de Energia Nuclear completará a construção do RMB – Reator de Multipropósito Brasileiro em Iperó, São Paulo, para atender as necessidades nacionais de radioisótopos, testes de materiais e combustíveis e experiências conjuntas com centros de pesquisa e universidades.
  8. Ampliar a prospecção de Urânio em território nacional.
  9. Incluir nas responsabilidades da INB a comercialização e gestão do estoque de urânio para atender as necessidades nacionais. A INB passaria a ter a atribuição de adquirir no Brasil a preços do mercado internacional em longo prazo o Yellow Cake que as mineradoras que operam no país decidirem produzir a partir do conteúdo de urânio nos minérios que exportam.
  10. Dar prosseguimento ao programa de submarinos com propulsão nuclear e, consequentemente, a todas as atividades em desenvolvimento em Aramar.

Bibliografia

AIEA. 2015. The Fukushima Daiichi Accident – Report by Director General . Viena : AIEA, 2015.

Alvin, Weinberg M. 1997. The First Nuclear Era: The Life and Times of a Technological Fixer Hardcover. s.l. : American Institute of Physics; 1994 edition , 1997. ISBN-13: 978-15639635.

Arms Control Association. 2018. Nuclear Weapons: Who Has What at a Glance. [Online] june de 2018. https://www.armscontrol.org/factsheets/Nuclearweaponswhohaswhat.

Atomic Archive. Timeline of the Nuclear Age. Nuclear Pathways. [Online] http://www.atomicarchive.com/Timeline/Time1930.shtml.

  1. 2018. BP Satistical Review of World Energy, 67th Edition. s.l. : BP, 2018.

Brawn, Paul. 2003. First nuclear power plant to close. The Guardian. [Online] Mar de 2003. https://www.theguardian.com/uk/2003/mar/21/nuclear.world.

CEPEL Eletrobras. 2001. Atlas do Potencial Eólico Brasileiro (2001). CRESESB. [Online] 2001. http://www.cresesb.cepel.br/index.php?section=publicacoes&task=livro&cid=1.

Craddock III, Jack. 2016. The Shippingport Atomic Power Station. [Online] 2016. http://large.stanford.edu/courses/2016/ph241/craddock1/.

Eletrobras. 2017. MapaSipot-Dezembro2017. [Online] dez de 2017. http://eletrobras.com/pt/AreasdeAtuacao/geracao/sipot/MapaSipot-Dezembro2017.pdf.

European Nuclear Society. Nuclear power plants, world-wide. euronuclear. [Online]

ONS. Mapa Dinâmico do SIN. Operador Nacional do Sistema Elétrico. [Online] http://www.ons.org.br/paginas/sobre-o-sin/mapas.

topographic.mapa.com. Brasil . topographei.mapa.com. [Online] http://pt-br.topographic-map.com/places/Brasil-3559915/.

  1. 1971. United Nations, General Assembly – Twenty-sixth Session. Restoration of the lawful rights of the Peoples’s Republic of China in United Nations. [Online] 25 de October de 1971. http://www.un.org/en/ga/search/view_doc.asp?symbol=A/RES/2758(XXVI).

____________________

Notas:

[1] 1938 (Dezembro) Fermi recebe o prêmio Nobel pela descoberta de “elementos transurânicos”, na verdade fissão de urânio e parte para os EUA. (22 deDezembro ) Otto Hahn envia texto para Lise Meiner com resultados experimentais que são interpretados por Meiner e seu sobrinho Otto Frish como fissão nuclear.  
1939 (6 de janeiro) Hahn e seu assistente Fritz Strassmann publicam seus resultados; (11 de Fevereiro)  Meitner and Frisch publicam a interpretação teórica dos resultados de Hahn-Strassmann como fissão nuclear .

[2] União Soviética 1949, Reino Unido 1952, França 1960 e China em 1964.

[3] Cerca de 14.570 ogivas sendo que 13.400 em poder de Rússia e EUA, conforme avaliação da Arms Control Association https://www.armscontrol.org/factsheets/Nuclearweaponswhohaswhat

[4] Nota: Vale a pena acessar os mapas mostrados na Figura 3. Os mapas permitem o zoom para examinar detalhes. É possível, no segundo mapa, ler a altitude do famoso encontro das águas dos rios Negro e Solimões, perto de Manaus. Onde a altitude é de 7m em relação ao mar. Isto faz com que o aproveitamento hidroelétrico do Rio Amazonas propriamente dito, formado deste encontro das águas, seja praticamente inviável para centrais de porte.

[5] Em alguns países do mundo são usadas usinas reversíveis, sendo a água de um reservatório bombeada para reservatórios a montante para armazenar energia excedente de outras usinas. Isto exige um considerável investimento que mesmo assim pode ser viável. Im considerável investimento que o Brasil ainda consegue evitar, mas pode ser uma alternativa às baterias para “armazenar vento” ou energia fotovoltaica.

[6] Na Bélgica, em uma mesma central existem usinas de diferentes proprietários o que nos sugere diferentes financiadores compradores de blocos de energia futura a ser produzida em uma mesma central nuclear brasileira. O financiamento da construção de usinas nucleares com o pagamento com a energia a ser produzida implicará na adoção de legislação que garanta a compra, o preço futuro da energia, sua correção inflacionaria e garantia cambial.

[7] Essa posição coincide com a adotada pela Política Nuclear Brasileira (Decreto Nº 9600 de 05/12/2018) e tem o significado de que o Brasil considera a energia contida no combustível utilizado aproveitável no futuro e baliza a definição do tipo de armazenamento a ser adotado que é muito importante na fase atual.

Economia e Energia – E&E  Nº 102,  janeiro a março de 2018

| E&E  Principal | E&E 102 |Editorial | Sistema Elétrico e Energia Nuclear  | Toda E&E 102 |

Toda E&E 102


Economia e Energia Ano XXIII  Nº 102, Janeiro a Março de 2019
ISSN 1518-2932   

Disponível em: http://ecen.com.br e http://ecen.com

Palavra do Editor:

REPENSANDO O SISTEMA ELÉTRICO BRASILEIRO

O sistema elétrico brasileiro é sui generis pela predominância de energias ditas limpas, do ponto de vista da emissão de CO2. A nuclear faz parte deste tipo de energia e sua participação é de 3% da geração de eletricidade no Brasil.

A forte participação da energia hidráulica praticamente exigiu a criação de um sistema nacional integrado de eletricidade, administrado de forma centralizada. Esta configuração foi facilitada, até os anos noventa, pelo fato da geração e transporte de energia serem estatais. A gestão desse sistema cabia, na prática, à Eletrobras com suas empresas regionais, com algum contraponto da forte presença de geradoras e distribuidoras estaduais fortes.

A introdução da participação do capital privado nos anos noventa obrigou a mudança de estrutura do setor elétrico. Foi criado um órgão para gerir o Sistema Integrado Nacional Elétrico – SIN e uma agência para normalizar o setor. Empresas estatais foram privatizadas e outras abriram seu capital. Foi abandonada a regionalização das geradoras. Um sistema de leilões passou a reger as concessões. A conjuntura de abertura econômica e as características geográficas dos novos aproveitamentos impediu a construção de grandes reservatórios.

Uma reestruturação do mercado de energia elétrica foi feita sob forte influência do modelo britânico. Esta estrutura foi posta a prova no “apagão” de 2001 e isto abriu mais espaço para as térmicas convencionais na matriz de geração. Posteriormente foi aberto espaço para as novas renováveis, principalmente a eólica, e também para a biomassa. A nova estrutura não tinha preocupação especial com as regiões menos providas dos “três Brasis”. No terceiro Brasil, desprovido das energias integradas, estão as regiões isoladas do SIN onde, paradoxalmente, também estão as grandes possibilidades de geração hídrica futura.

A situação da energia nuclear não foi bem resolvida e continuou dependente de aportes estatais e engessada por uma fixação de tarifas que não possibilita novos investimentos.

As hidrelétricas construídas a partir da década de 1990 e as futuras não possuirão reservatórios significativos e operariam a “fio d’água” onde a energia produzida é função da capacidade das turbinas instaladas e da vazão momentânea do rio que alimenta cada hidrelétrica sendo, portanto, mais sujeitas aos caprichos da natureza. Neste século tem sido crescente a utilização das fontes eólica, solar e biomassa intrinsecamente dependentes da natureza, aumentando a complexidade de atender e garantir o fornecimento de energia elétrica da maneira mais econômica possível minimizando o impacto ambiental. 

Estamos necessitando de uma nova visão do sistema elétrico brasileiro que leve mais em conta seu caráter tão especial. Para refletir sobre esse assunto, contamos com a colaboração de Othon Pinheiro da Silva, personagem de capital importância na história do desenvolvimento da energia nuclear no Brasil.

O trabalho aqui apresentado resultou de uma demanda feita a ele pelo Presidente do Clube de Engenharia. Procuramos acrescentar alguns detalhes e ilustrações ao trabalho que, fundamentalmente, segue a linha de pensamento do documento originalmente concebido para atender àquela solicitação.

 Carlos Feu Alvim

____________________

Sumário

REPENSANDO O SISTEMA ELÉTRICO BRASILEIRO

SISTEMA ELÉTRICO E   ENERGIA NUCLEAR NO BRASIL

Resumo

Palavras chave:

  1. Energia Nuclear: Explosão Inicial
  2. Energia Nuclear para Gerar Eletricidade
  3. Energia Núcleo Elétrica no Brasil
  4. A Tradição Hidroelétrica
  5. A Reforma do Sistema Elétrico dos Anos 1990
  6. Repensando o Sistema Elétrico
  7. Os três Brasis
  8. O Futuro da Energia Nuclear no Brasil

Bibliografia

______________________________



Economia e Energia Ano XXIII  Nº 102, Janeiro a Março de 2019
ISSN 1518-2932
Disponível em: http://ecen.com.br e http://ecen.com

Opinião:

SISTEMA ELÉTRICO E ENERGIA NUCLEAR NO BRASIL

Othon Pinheiro da Silva,Olga Mafra e Carlos Feu Alvim

Resumo

A energia nuclear é a mais recente das fontes energéticas que utiliza a humanidade e está completando oitenta anos.

Sua utilização inicial foi bélica e isto marcou seu futuro. Sua utilização pacífica na geração de energia nuclear se dá principalmente na geração elétrica, mas é também muito relevante o uso de isótopos na medicina. A energia nuclear é hoje reconhecida como caminho eficaz para reduzir a emissão de gases de efeito estufa. Na matriz energética brasileira, ela tem a participação de 3% e permanecerá com uma participação minoritária na matriz energética brasileira nas próximas 3 décadas.

A abertura econômica dos anos de 1990 tentou reorganizar o sistema elétrico de maneira a admitir a maior participação do capital privado e, forçada pelo “apagão de 2001”, incorporou novas fontes de na geração de eletricidade. O sistema adotado, com forte influência do exemplo termoelétrico britânico, apresentou problemas que precisam ser equacionados levando melhor em conta suas características próprias e sua complexidade econômica, geográfica e climática. A impossibilidade construir grandes reservatórios incluiu a energia hídrica entre as fontes sujeitas aos caprichos da natureza como a eólica, solar e biomassa,.

A solução dessas complexidades demanda uma reforma do sistema elétrico que necessita de energia estável de base, onde a nuclear deve colaborar e também para cobrir as oscilações do sistema com melhor uso dos reservatórios e o ocasional uso de fontes térmicas.

Palavras chave:

Sistema elétrico, energia nuclear, geração de eletricidade, gestão, clima.

_________________________

1.    Energia Nuclear: Explosão Inicial

A energia nuclear é a mais recente entre as fontes disponíveis de energia utilizadas pela humanidade. A descoberta da fissão nuclear ocorreu em 1938/1939 quando Otto Hahn submeteu e publicou seus resultados experimentais e Lise Meitner e Otto Frish completaram a interpretação dos experimentos de Otto Hahn (Atomic Archive). A energia nuclear está, portanto, completando 80 anos de idade[1].

Como a descoberta da fissão nuclear coincidiu com o início da Segunda Guerra mundial, sua primeira aplicação foi bélica. A humanidade tomou conhecimento da energia nuclear em 1945 com os holocaustos de Hiroshima e Nagasaki que provocam até hoje, no ideário popular, natural rejeição a esta fonte de energia.

Ao terminar a Segunda Guerra Mundial, teve inicio a geopolítica bipolar onde o mundo foi dividido em dois grandes blocos, o Ocidental liderado pelos Estados Unidos e o Bloco Soviético liderado pela então União Soviética (cuja sucessora é a Rússia).

A ONU foi criada em 1945 e os cinco países, considerados os vencedores da Segunda Grande Guerra Mundial, EUA, União Soviética, Reino Unido, França e China, ocuparam os lugares permanentes no Conselho de Segurança da ONU, tendo poder de veto. Não por coincidência, estes mesmos países foram os primeiros a se juntar ao “Clube Nuclear”, entre 1949 e 1964[2]. A China foi, até 1971, representada pelo governo nacionalista de Taiwan. A partir daquele ano, a Resolução 2758 (UN, 1971) da Assembleia Geral da ONU estabeleceu a República Popular da China como representante daquele país na ONU e no Conselho de Segurança.

Foi estabelecida uma corrida armamentista, entre estes dois grandes blocos, que priorizava a fabricação de bombas atômicas e mísseis de longo alcance para transportar as ogivas nucleares. Na década de 1950, as bombas nucleares tiveram sua capacidade de destruição “exponenciada” com o desenvolvimento das bombas nucleares que usam a fusão nuclear (comumente conhecida como Bomba H, de hidrogênio). A corrida armamentista continuou crescendo até que ambos os blocos entenderam o conceito MAD – Mutual Assured Destruction (destruição mutua assegurada). Acordos entre as duas maiores potências e o fim da Guerra Fria levaram a uma sensível redução das ogivas nucleares e a quantidade delas diminuiu. Atualmente, o número está estável, mas ainda foi mantido um considerável estoque mundial de bombas [3].

Os cinco componentes do “Clube Nuclear” são membros permanentes do Conselho de Segurança e cada uma das cinco potências tem a prerrogativa de vetar as resoluções da ONU. Posteriormente, Israel (veladamente), Índia, Paquistão e Coreia do Norte agregaram armas atômicas aos seus arsenais, mas sem adquirir o “status” de “nuclear weapon states” no Tratado de Não Proliferação Nuclear – TNP ou de membro do Conselho de Segurança da ONU.

Figura 1: Evolução das ogivas nucleares nos EUA.

Em 1965, o estoque de armas nucleares nos EUA havia superado as 30.000 ogivas, logo após a crise dos mísseis em Cuba (Figura 1). A partir daí, houve uma gradual redução dos arsenais, tanto dos EUA como da União Soviética, com acordos de desarmamento a partir de 1991. Seguiu-se a dissolução da União Soviética e os estoques de armas nucleares se estabilizaram a partir de 2010. Sabe-se menos a respeito da evolução dos estoques da extinta União Soviética. Rússia e EUA teriam, em 2018, um arsenal um pouco superior a 6.500 ogivas cada (Arms Control Association, 2018).

2.    Energia Nuclear para Gerar Eletricidade

Já no início dos anos sessenta, com o início do arrefecimento da grande corrida armamentista bipolar mundial houve mais espaço para aplicações pacíficas. Surgiram usinas nucleares incorporadas à rede de distribuição. As primeiras parecem ser a de Obninsky APS-1 que em 1954 teria se conectado, com 5 MW, à rede, a de Sellafield (Calder Hall) no Reino Unido, que iniciou seu funcionamento em 1956 com capacidade inicial de 50 MW, depois aumentada para cerca de 200 MW (European Nuclear Society), e que seria também a primeira a ser descomissionada  (Brawn, 2003) e a Shipping Port Atomic Power com 60 MWe da Duquesne Light Company  (Craddock III, 2016) nos Estados Unidos que, de acordo com a US Nuclear Regulatory Comission, foi a primeira projetada para uso comercial, tornando-se operacional em 1957.

A partir de 1962, a tecnologia nuclear começou a ter sua utilização ampliada na geração de energia elétrica e se iniciou um período de grande euforia, denominado por Weinberg como a “primeira era nuclear” (Alvin, 1997) onde inicialmente havia a utopia de que seria possível produzir grandes quantidades de energia elétrica a preços ridiculamente baixos com a fonte nuclear. No final da década de 1960, iniciou-se a conscientização da realidade dos preços.

O incidente ocorrido na usina de Three Mile Island, dia 28 de Março de 1979, em Harrisburg Pensilvânia nos Estados Unidos, embora não tenha causado praticamente nenhum dano humano ou material, serviu de alerta para o que deveria ser aprimorado nos conceitos de operação e segurança das usinas nucleares. Esse alerta provocou modificações em todas as usinas nucleares que usavam reatores tipo PWR – Pressurized Water Reactor, aumentando sua segurança.

Entretanto já existiam outras usinas nucleares com reatores de tecnologia menos segura como os reatores RMBK de Chernobyl, Ucrânia e também usinas em cuja instalação não haviam sido respeitadas as boas normas internacionais de segurança em sua localização, particularmente, na sua cota de posicionamento em relação ao nível do mar como ocorreu em algumas das usinas BWR- Boiling Water Reactor , que foram construídas na Central Nuclear de Fukushima, Japão. Uma descrição do ocorrido foi publicada pela AIEA (AIEA, 2015).

As usinas da Central Nuclear Fukushima foram construídas em uma cota baixa relativa ao nível do mar. A cota do protetor marinho foi fixada em 5,5 m a partir de avaliações disponíveis na época. Uma reavaliação do órgão superior que cuida de terremotos no Japão, anterior aos eventos, modificou para cima o nível de terremoto que poderia ser esperado na região bem como a altura da onda do Tsunami. A Tokyo Electric Power Company – TEPCO, proprietária da Central, não mudou as especificações das usinas nem foi forçada a isto pelo órgão regulador nuclear japonês. Com isso, a cota da usina era inferior à altura para resistir à onda máxima prevista na reavaliação. A previsão dessa reavaliação estava próxima da que realmente atingiu a Central (cerca de 10m) .

As instalações diesel, geradoras de energia em emergência, existem em todas as usinas nucleares, para prover a energia elétrica necessária para operar o sistema de remoção do calor residual no combustível dos reatores nucleares, após o seu desligamento. Em Fukushima, em virtude de insuficiente altura em relação ao nível do mar, estas instalações, auxiliares porem muito importantes, foram alagadas pela onda causada pelo tsunami e ficaram inoperantes.

O não funcionamento do sistema de remoção do calor residual levou a fusão de alguns dos núcleos dos reatores da Central. Todas as usinas nucleares são dotadas de sensores de vibração e acelerômetros que provocam a interrupção do funcionamento e desligamento das usinas quando ocorrem terremotos mesmo de baixa intensidade.

A analise posterior da central de Fukushima indicou que suas usinas, sob o ponto da integridade das suas estruturas, tubulações e equipamentos resistiram bem ao terremoto que foi maior do que o terremoto com as características para o quais foram projetadas. A Central Nuclear de Fukushima se encontra localizada a pouco mais de noventa milhas náuticas do encontro de três placas tectônicas que transforma aquela região em um dos locais mais instáveis sob o ponto de vista da sismologia e, por via de consequência, muito sujeita a grandes terremotos e tsunamis. O acidente evidenciou o posicionamento das instalações diesel geradoras de emergência em altura insuficiente em relação ao nível do mar. Não foram devidamente consideradas, no projeto, as peculiaridades locais causadas pela proximidade do encontro de placas tectônicas.

À inoperância dos geradores de emergência á diesel (só um, da unidade 6, não foi atingido) e das baterias de emergência, em 3 delas, provocaram os piores acidentes (derretimento do elemento combustível e vazamento do vaso de contenção). Deve-se notar que não houve vazamento significativo de plutônio como no caso do acidente de Chernobyl. Isso pode contribuir para tornar possível a recuperação, no médio prazo, de boa parte da área atingida.

3.    Energia Núcleo Elétrica no Brasil

A decisão brasileira, no inicio da década 1970, de construir a Usina Nuclear Angra 1 e posteriormente a decisão de assinar o Acordo Nuclear Brasil Alemanha em 1975, não foi bem assimilada pelo setor elétrico de então que naturalmente tinha cultura fortemente hidrelétrica pelo fato desta fonte, até então, atender perfeitamente às necessidades de demanda de energia elétrica brasileiras.

Em decorrência do Acordo Nuclear Brasil Alemanha, de 1975, foi programada a construção de mais duas usinas em Angra dos Reis (2 e 3) e ainda a construção de mais duas usinas no litoral sul do Estado de São Paulo.

Naquela época, a opção nuclear se constituiu numa decisão de cúpula em um regime de exceção, ainda inspirada na utopia de produção de energia elétrica a preços muito baixos. A influência de fatores ligados à geopolítica foi também fator importante. A crise mundial causada pelo grande aumento do preço do petróleo em 1973 foi utilizada como motivadora da decisão.

4.    A Tradição Hidroelétrica

A determinação governamental, na década de 1970, de incorporar energia nuclear ao sistema elétrico foi imposta ao setor elétrico em paralelo com um grande programa de construção de hidrelétricas já em curso. Este, embora contasse com a aprovação do setor elétrico, teve seu dimensionamento decidido no mesmo regime verticalizado de decisão. Esse programa hidroelétrico previa o aproveitamento de praticamente todas as possibilidades de construção de hidrelétricas nos rios situados na região que se estende do Vale do Rio São Francisco até Itaipu. Foram grandes os investimentos no setor elétrico nesta época, um dos setores que mais recebeu investimentos no Brasil. O grande crescimento anual do PIB – Produto Interno Bruto naquele período e a atratividade político/empresarial das obras foram estimuladores deste grande investimento setorial.

A região acima mencionada era muito convidativa para construção de hidrelétricas, pois é geologicamente estável, localizada no meio de uma grande placa tectônica, dotada de oportunidades de aproveitamentos hidrelétricos em locais que já haviam sido desmatados em função de ciclos agrícolas e apresentava topografia que permitia a construção de reservatórios com grande capacidade de armazenamento de água. Esta região apresentava um conjunto de características favoráveis à construção e operação de hidrelétricas raramente encontradas em outros locais do nosso planeta.

Na década anterior (de 1960) o sistema elétrico nacional havia sido padronizado em corrente alternada com sessenta ciclos por segundo. Até então, a região de Minas Gerais, São Paulo e Paraná operavam com sessenta ciclos enquanto o Rio de Janeiro operava com cinquenta ciclos. A padronização da ciclagem facilitou a integração do sistema elétrico nacional onde as maiores fontes geradoras, as hidrelétricas, têm suas localizações definidas pela natureza e não pelo homem.

Ao longo da década de 1980, as hidrelétricas atendiam plenamente a demanda de eletricidade. O estoque de água nos reservatórios dessas usinas complementava o fornecimento de água necessário ao funcionamento satisfatório das turbinas em todas as ocasiões. Isso acontecia, tanto nos meses do ano em que as vazões dos rios eram menores do que a demanda de energia elétrica, como nos ciclos pluviométricos de seca na região central do Brasil, onde estão localizadas as nascentes, e os rios que alimentam grande parte do sistema hidrelétrico nacional.

Nas décadas de 1980 e 1990, as hidrelétricas que haviam sido construídas depois do racionamento na década de 1960 continuaram satisfazendo à demanda de eletricidade, mesmo nos anos mais secos dos ciclos pluviométricos plurianuais que, historicamente, parecem se repetir com a periodicidade de cerca de dez a doze anos aproximadamente.

A partir da segunda metade da década de 1980, o sistema elétrico começou a apresentar problemas em termos administrativos e gerenciais. Havia inadimplência de uma estatal em relação à outra e muita interferência do setor político. É emblemático o desafio do Governador Orestes Quércia de São Paulo ao Presidente de Furnas (e anteriormente Ministro) Dr. Camilo Pena: Face à inadimplência por parte do Estado de São Paulo, o Governador tranquilamente desafiou o Presidente de Furnas sugerindo, ironicamente, “desligar São Paulo”. O assunto foi afinal resolvido pela interferência de pessoas sensatas.

Em alguns Estados da Federação havia empresas estatais estaduais que produziam, transmitiam e distribuíam a energia elétrica e também recebiam energia das empresas estatais nacionais pertencentes à ELETROBRAS. Não havia a separação administrativa empresarial entre a produção de energia por atacado nas hidroelétricas, a transmissão (o transporte a distância da energia) e a distribuição ao utilizador final, ou seja, o varejo. A influência político partidária cresceu demais e passou a comprometer o funcionamento de todo o sistema.

5.    A Reforma do Sistema Elétrico dos Anos 1990

Na década de 1990, estava evidente a necessidade de reformatação administrativa gerencial do sistema elétrico nacional e a economia brasileira foi atingida por uma onda de liberalismo. Foi contratada então a participação de uma empresa consultora do Reino Unido para tratar da reformulação e regulamentação do sistema elétrico nacional. O sistema elétrico Inglês, ao qual os consultores estavam acostumados, era prevalentemente térmico e com características completamente diferentes do sistema brasileiro. Na reestruturação, pós Margaret Thatcher, do sistema elétrico do Reino Unido em 1983 foi introduzido na regulamentação o conceito de competição e houve grande privatização das empresas participantes do fornecimento da energia elétrica produzida e distribuída no Reino Unido.

O sistema elétrico inglês, nos anos noventa, era quase inteiramente termoelétrico e muito dependente da utilização do carvão que estava começando a ser substituído por gás natural. O funcionamento das centrais que utilizam estes combustíveis é bastante independente de ciclos da natureza e praticamente sujeito somente ao planejamento e controle humano. A fonte hídrica representava apenas cerca de 2,5% do total da energia produzida naquele país.

O grupo de consultores ingleses tinha o “DNA” termoelétrico e era, logicamente, orientado pelas ideias de liberalização da economia, privatização e competição. Esta “escola de pensamento” contribuiu para que este “DNA” da onda econômica pós Margareth Thatcher fosse fortemente “miscigenado” na formulação da regulamentação do sistema elétrico brasileiro, majoritariamente hidrelétrico, que necessita compatibilizar o planejamento de sua operação com as variações do sistema pluviométrico controlado pela natureza e não pelo homem como é o sistema térmico do Reino Unido.

Um estudo adequado que fosse realizado por grupo competente e analisasse as características e as peculiaridades do sistema elétrico brasileiro e se preocupasse, não somente, em seguir as regras de comercialização da economia liberal, teria identificado que o estoque máximo de água nos reservatórios das hidrelétricas brasileiras havia se mantido constante desde a década de 1980 enquanto o consumo de energia elétrica naturalmente continuou crescendo e isto certamente repercutiria no planejamento e na operação do sistema elétrico brasileiro, predominantemente hidroelétrico. Ou seja, a reforma implantada nos anos 1990 não peca por seu caráter liberal – cuja discussão é importante, mas está em uma esfera mais ampla – mas por não haver levado devidamente em conta a natureza física do sistema elétrico existente.

Em 2001, o país vivia um período de pouca pluviosidade e os reservatórios das hidrelétricas se encontravam praticamente vazios. O Brasil foi então “surpreendido pelo obvio” e tornou-se necessário o racionamento de energia elétrica que “a mídia” apelidou de “apagão”.

Na realidade o “apagão elétrico” havia sido precedido de um “apagão de competência” ao não se entender, por quase uma década, que o aumento e a transformação do consumo implicariam em modificações compatíveis na produção e na transmissão de eletricidade no Brasil.

A Usina Nuclear Angra 1 havia sido fornecida pela Westinghouse e iniciou seu funcionamento comercial em dezembro de 1984. Infelizmente, principalmente por falhas técnicas de projeto, apresentou baixo nível de desempenho ao longo das décadas de 1980 e 1990. Razões financeiras fizeram com que a Usina Nuclear Angra 2 tivesse desacelerada sua construção e o início da sua operação comercial somente ocorresse em fevereiro de 2001. Estes fatos contribuíram para a descrença dos executivos do sistema elétrico em relação à opção nuclear. Até o inicio do funcionamento comercial da Usina Nuclear Angra 2 o “sistema elétrico” associava energia nuclear unicamente a grandes investimentos e baixo desempenho.

Esse mesmo “sistema elétrico” reconheceu, no entanto, que sem a entrada em funcionamento comercial da Usina Termonuclear Angra 2 com 1300 MW de potência elétrica, no início de 2001, o “apagão elétrico” teria sido ainda maior.

Em consequência do “apagão”, imediatamente foi decidida a construção de termoelétricas que usam como combustível óleo ou gás e que apresentavam menor investimento inicial e menor prazo de construção.

As termelétricas que foram construídas a partir do “apagão” têm contribuído para garantir a continuidade no fornecimento de eletricidade independentemente das variações do regime pluviométrico, mas provocam excessivo aumento do preço médio da eletricidade ofertada ao consumidor, sobretudo porque, ao menos substancial parcela delas tem sido operada continuamente (na base de carga). Desconsidera-se também o aumento da emissão de gases de efeito estufa, ignorando compromissos assumidos internacionalmente pelo País.

A experiência internacional demonstra que termoelétricas para funcionarem continuamente “na base de carga” devem ser preferencialmente termoelétricas convencionais, usando carvão como combustível, ou usinas nucleares. As usinas convencionais a carvão são responsáveis por 38% da energia elétrica produzida no mundo, as térmicas a gás natural representam 23% e o óleo combustível apenas 3%. A contribuição mundial total das usinas hidrelétricas é da mesma ordem de grandeza (16 %) da contribuição da fonte nuclear (10 %) e a das fontes renováveis (8%).

A Figura 2 ilustra a enorme diferença da distribuição das fontes energéticas usadas na geração de energia que, por sua natureza completamente diversa da média mundial, tem que ser administrado de uma maneira também diferente.

 

Óleo

Gás Natural

Carvão

Nuclear

Hidro

Reno-váveis

Outros

Brasil

3%

11%

4%

3%

63%

17%

0%

Mundo

3%

23%

38%

10%

16%

8%

1%

Fonte: BP stats-review-2018-all-data (dados referentes a 2017) (BP, 2018)

Figura 2: Comparação das estruturas de geração de eletricidade no Brasil e no mundo mostrando a peculiar estrutura brasileira,

Embora ainda muito menor do que faz acreditar sua divulgação, tem sido crescente a contribuição da energia renovável, principalmente eólica, mas também solar na produção de energia elétrica no Brasil e no mundo. A energia eólica mais a solar representaram em 2017 8% no mundo e 7,3% no Brasil. É destaque no Brasil a participação da biomassa que representa cerca de 9% da geração elétrica (na Figura 2, incluída entre as renováveis).

O desenvolvimento da tecnologia, com o uso de redes elétricas inteligentes, indica a tendência ao crescimento na utilização da energia eólica e também da energia solar na produção de energia elétrica brasileira, respeitando, evidentemente, suas características de fontes intermitentes e, portanto, dependentes de complementação.

6.    Repensando o Sistema Elétrico

Parece necessário repensar e reestruturar o sistema elétrico brasileiro, fundamentado em práticas comerciais não condizentes com as peculiaridades brasileiras, que atualmente mantém quase as mesmas bases estabelecidas na década de 1990. A revisão do planejamento do sistema elétrico certamente tenderá incorporar os avanços tecnológicos e a maior utilização das redes inteligentes.

Na reestruturação do sistema elétrico brasileiro, as necessárias modificações na operação e comercialização devem ser compatibilizadas com as características das fontes primárias nacionais de produção de eletricidade e também com o tipo de distribuição geográfica e peculiaridades da demanda de energia.

O varejo, ou seja, a distribuição final da energia elétrica em média e baixa tensão ao consumidor, após as subestações rebaixadoras de tensão, é praticamente independente da fonte produtora de energia. Trata-se de atividade administrativa e gerencial muito dinâmica normalmente melhor executada por empresas privadas em regime de concessão. Esta atividade pode ser fracionada para evitar grande concentração de poder em uma única empresa distribuidora em grande área do território nacional.

A lógica pode indicar que as empresas privadas, “responsáveis pelo varejo”, ou seja, pela entrega da energia elétrica ao consumidor final, tenham a sua sede no município embora possam ter como acionistas majoritários empresas “holding” que não tenham sede no município. É desejável que nas empresas distribuidoras municipais de energia uma pequena percentagem de suas ações seja de propriedade de moradores no município e que comprariam e também venderiam suas ações ao “preço de face das ações”. É importante que o representante deste grupo minoritário faça parte do conselho administrativo da empresa municipal. Em caso de “holding” controladora, obrigatoriamente um dos membros do conselho de administração, deveria pertencer a secretaria de energia do estado. A proximidade do entregador da energia com o cliente tende a aprimorar esse atendimento. Um bom exemplo de funcionamento deste sistema é o Município de Belmont no Estado de Massachusetts, Estados Unidos.

A distribuição final da energia por companhia com a sede situada no município contribui para aumentar a renda municipal e diminuir a “exportação” de capital da comunidade utilizadora final de energia para outros lugares.

A prioridade do sistema elétrico nacional certamente deverá ser a garantia e segurança do fornecimento de eletricidade, buscando o menor preço médio do Megawatt-hora (MWh) e a minimização do impacto ambiental.

No planejamento do sistema elétrico é importante considerar que, ressalvada sua grande importância, este setor se constitui um segmento da matriz energética nacional que em seu planejamento deverá levar em consideração a eficiência e economicidade de utilização dos insumos energéticos.

O biênio fundamental dos cursos de engenharia inclui  cursos de termodinâmica que nos ensinam que a transformação de energia química ou térmica em energia mecânica apresenta sempre modesta eficiência. A utilização do gás e derivados de petróleo em aplicações “mais nobres” como são os meios de transporte, por sua portabilidade, na petroquímica, por serem praticamente insubstituíveis, ou no aquecimento direto industrial e domiciliar onde a termodinâmica mostra que a eficiência da transformação da energia química em energia térmica é muito alta.

No planejamento da matriz energética nacional parece lógico priorizar os combustíveis encontrados no território brasileiro e utilizar nas usinas termoelétricas que operam em regime continuo sempre que possível urânio ou até mesmo carvão procurando sempre minimizar o uso de gás e derivados de petróleo para garantir seu emprego em suas aplicações mais nobres ou até mesmo na exportação.

7.    Os três Brasis

É muito importante que haja o entendimento que o Brasil, do ponto de vista do consumo de eletricidade, é um país com 214 milhões de habitantes e dimensões continentais com diferentes regiões climáticas onde convivem na mesma área geográfica total “três Brasis” com características diferentes:

O “primeiro Brasil” é composto de um arquipélago de “ilhas de concentração habitacional e denso consumo de eletricidade”, constituído de (dados de 2017):

  • Duas grandes metrópoles formadas por São Paulo (12 milhões de habitantes e mais 9 milhões com os municípios próximos e vizinhos) e Rio de Janeiro (6,7 milhões de habitantes e mais 2,5 milhões considerando as adjacências).
  • Cinco cidades com mais de dois milhões de habitantes (Salvador – 2,9 milhões, Brasília – 2,85 milhões, Fortaleza 2,57 milhões, Belo Horizonte – 2,94 milhões e Manaus – 2,2 milhões).
  • Dez cidades com mais de um milhão de habitantes (Curitiba -1,86 milhões, Recife – 1,6 milhões, Porto Alegre – 1,47 milhões, Belém – 1,43 milhões, Goiânia – 1,41 milhões, Guarulhos – 1,31 milhões, Campinas – 1,15 milhões, São Luiz – 1,06 milhões, São Gonçalo – 1,0 milhão e Maceió – 1,0milhão).
  • Vinte e cinco cidades com mais de quinhentos mil habitantes.

Este grande “arquipélago brasileiro de centros de denso consumo de eletricidade” demanda “grandes blocos de fornecimento de energia elétrica” que normalmente são produzidos por fontes de alta densidade de produção de energia que são as hidrelétricas, as termoelétricas convencionais e as térmicas nucleares. Uma boa ilustração desse arquipélago é a visão noturna por satélite mostrada na Figura 3. Nela fica clara (embora literalmente escura) a baixa densidade de consumo de grande parte do território nacional e a desigualdade de distribuição do consumo elétrico. Pode-se, inclusive, localizar praticamente todas as “ilhas” acima mencionadas.

Figura 3: Visão noturna mostrando as “ilhas” de iluminação existentes no Brasil e vizinhanças, podendo-se perceber a faixa iluminada ao longo do trópico de Capricórnio (São Paulo, Rio) e a da costa nordestina http://tecnaula.blogspot.com/2011/02/mais-uma-da-serie-um-satelite.html.

Dentro desses grandes centros urbanos de consumo com grande concentração populacional, é possível a utilização apenas complementar da fonte solar (dependendo da insolação do local) considerando que, por sua baixa densidade de produção e intermitência, será sempre uma contribuição percentualmente muito pequena em relação à demanda total de eletricidade destes centros de consumo.

As grandes concentrações populacionais da Zona Franca de Manaus, Santarém e Belém do Pará, embora situadas na Região Amazônica, são servidas pelo sistema elétrico principal e consideradas como pertencentes ao “primeiro Brasil”.

O “segundo Brasil” é constituído pelas cidades médias e pequenas e áreas adjacentes. Este segundo Brasil, embora seja uma “colcha de retalhos” formada de áreas de “media densidade de consumo”, em seu total, consome muita eletricidade. Com menor dificuldade podem aumentar a produção e o consumo das energias alternativas eólicas e solar (dependendo sempre do mapa de ventos e da insolação) pois as redes elétricas existentes são bastante ramificadas e apresentam menor dificuldade de expansão.

O “terceiro Brasil” é composto de grandes áreas, com baixa ou muitíssimo baixa densidade de consumo de eletricidade, situadas nas regiões do sertão do Nordeste e Amazônia. Estas áreas exigem análise e tratamento específico para cada micro região.

As fontes primárias renováveis, eólica e solar, são de baixa densidade na sua “produção” e variam a quantidade de energia produzida durante as vinte quatro horas do dia e com a as condições climáticas, mas têm grande potencial de aplicação no “terceiro Brasil” embora necessitem utilizar o auxilio de estocagem da energia como garantia para assegurar o fornecimento contínuo da energia ao usuário. Quando baterias são utilizadas para estocagem de energia devemos esperar aumento no valor do investimento e também que o descarte das baterias apresente o potencial de grande impacto ambiental.

A região da Bacia Amazônica pode ser interpretada como a composição de áreas com diferentes características: a primeira delas é a área quase plana vizinha da calha principal do Rio Amazonas e também as áreas quase planas próximas onde correm o terço final dos rios afluentes. Nessas áreas planas é pouco praticável o aproveitamento hidrelétrico para suprimento de energia elétrica aos pequenos grupamentos humanos existentes. Cada um desses grupamentos humanos nesta área plana, muito sujeita a alagamentos, exige um tratamento específico. Em sua maioria são grupamentos humanos ribeirinhos, mas sem possibilidade econômica de aproveitamentos hidroelétricos locais.

As áreas não planas da Amazônia onde se encontram os dois terços iniciais do comprimento dos rios tributários contando a partir de suas nascentes, podem ser denominadas de regiões inclinadas/serranas: a primeira região inclinada/serrana está localizada a oeste e noroeste da calha principal plana do Rio Amazonas englobando as a áreas próximas as fronteiras da Bolívia, Peru e Colômbia; a segunda área inclinada/serrana é denominada Região Norte da Bacia Amazônica onde correm os rios próximos as divisas da Venezuela, Guiana, Suriname e Guiana Francesa e seus afluentes; a terceira região inclinada/serrana localizada ao sul é próxima ao planalto central brasileiro. As áreas montanhosas constituem a “borda da bacia amazônica”.

As três grandes áreas inclinadas/serranas juntas compreendem a maior percentagem da área da Amazônia Brasileira. Estas três grandes áreas (Figura 4)[4] apresentam grandes oportunidades de aproveitamentos hidroelétricos principalmente “a fio d’água“ que não provocam grandes alagamentos ou desmatamentos e podem com relativa facilidade suprir as necessidades de eletricidade dos pequenos assentamentos humanos existentes e atividades extrativistas.

Mapa Potencial Elétrico, mostrando as bacias, – Eletrobras (Eletrobras, 2017)

Mapa das Elevações do Brasil (topographic.mapa.com)

Figura 4: Mapas dos rios (ao alto), e de elevações (abaixo) assinalando regiões onde é mais viável o aproveitamento hidroelétrico na Amazônia.

Na região semiárida do “Terceiro Brasil” situada no Nordeste Brasileiro a utilização racional da energia solar e eólica pode muito contribuir para a melhora econômica da região. Ver Mapa da Figura 5 (CEPEL Eletrobras, 2001).

Figura 5: Atlas do Potencial Eólico Brasileiro
CEPEL/MME

Para os grupamentos humanos isolados, onde economicamente não for viável o “back-up” por redes elétricas do sistema elétrico, será necessária a estocagem de energia em baterias ou a utilização de geradores diesel para garantia do suprimento de energia elétrica.

Os grupamentos humanos do “Terceiro Brasil” onde ocasionalmente houver a interligação com as redes do Sistema Integrado Nacional poderão, além do uso das fontes renováveis, utilizar o regime de exportação/importação de energia através de redes inteligentes e utilizando indiretamente o estoque regulatório de água dos reservatórios das hidroelétricas, tornando praticamente desnecessária a estocagem local de energia em baterias para garantir a regularidade do fornecimento de energia elétrica.

Denomina-se “Sistema Integrado Nacional – SIN” o servido pelas grandes linhas de transmissão (Figura 6), as redes de distribuição e seus ramais que atendem ao “Primeiro Brasil”, ”ao Segundo Brasil” e aos centros de consumo por ventura interligados do “Terceiro Brasil”. O SIN tem nas hidroelétricas sua fonte principal de produção de energia. Nota-se na Figura 6 que grande parte do território brasileiro integra esse “Terceiro Brasil” onde o SIN não está presente.

O maior potencial hidrelétrico a ser explorado pelo Brasil se concentra nas áreas da Bacia do Amazonas que não apresentam grandes elevações nem são propícias a reservatórios de grande capacidade. Na concepção atual de desenvolvimento brasileiro, essas usinas se destinam à “exportação” para a região Sudeste-Centro-Oeste SE-CO como já acontece com as usinas instaladas do Rio Madeira e, em grande parte, com a própria energia de Itaipu. Essas usinas chegaram a ser consideradas, para fins de planejamento do SIN, como integrantes da região SE-CO.

Figura 6: Sistema Integrado Nacional – SIN Mapa das Linhas de Transmissão da ONS (ONS)

A introdução de usinas a fio d’água é um grande problema não suficientemente explicitado no nosso planejamento elétrico. No início de 2005, ele foi claramente exposto no artigo “Um Porto de Destino para o Sistema Elétrico Brasileiro” na revista E&E № 49. Na Figura 7, (retirada desse artigo), mostram-se as curvas de energia natural afluente – ENA para as diversas regiões do Brasil que compõem o SIN.  A solução desse problema não é trivial. A regulação sazonal não poderá ser feita com os reservatórios já existentes e o custo da nova energia, com cinco meses do ano com cerca de 10% da capacidade máxima, deverá obrigatoriamente incluir o da energia complementar para o período seco. Esta já é, aliás, a realidade que enfrenta o consumidor que já está pagando um preço diferenciado para cobrir o custo das usinas térmicas que atualmente utilizam óleo ou gás combustível.

Energia Natural Afluente nas Regiões do SIN

Figura 7: A energia natural afluente é governada pela vazão dos rios, na medida que se amplie a participação da Região Norte, com usinas sem reservatórios, a geração elétrica passará a ter forte sazonalidade.  

Soma-se, agora, a oscilação ao longo do dia da energia eólica (atualmente) e futuramente da solar, defasadas da curva diária de consumo. Isso exige das hidroelétricas um excesso de capacidade instalada que encarece seus custos e obriga o uso do estoque regulador.

É primordial a conscientização sobre a importância de considerar a água existente nos reservatórios como estoque regulador de energia. Isso nos conduzirá a utilizar o SIN priorizando a utilização da energia proveniente da região norte nos meses que houver grande caudal e, na medida do possível, estocar água nas hidrelétricas das outras regiões que tenham  capacidade de estocar.

O caudal (vazão) dos rios que alimentam as hidrelétricas (volume de água por segundo) varia ao longo das estações do ano e também com as variações plurianuais dos ciclos hidrológicos. O funcionamento das termoelétricas que consomem biomassa também está sujeito a variações anuais e plurianuais. Torna-se, portanto evidente o conceito de adotar um “estoque regulador de energia” para compensar os períodos em que a energia disponibilizada pelo baixo caudal dos rios e a biomassa disponível seja insuficiente para atender a demanda. O “estoque regulador de energia” é a soma dos estoques de água existentes nos reservatórios das hidroelétricas.

Não existe melhor estoque regulador de energia do que a água nos reservatórios das hidroelétricas. Tal estoque regulador de energia permite atender com simplicidade e presteza as variações na demanda de eletricidade[5].

É desejável também a adoção da estratégia de priorizar no despacho as usinas hidrelétricas à fio d’água e com pequena capacidade de estocar água objetivando sempre maximizar o “estoque regulador de energia” depositado em água nos reservatórios.

As usinas nucleares, se existirem em quantidade suficiente, permitirão ao operador nacional do sistema elétrico gerenciar o sistema de forma que haja sempre o “estoque mínimo necessário regulador de energia” que permita atender as flutuações na demanda de eletricidade mantendo razoável o custo da produção da eletricidade e o baixo impacto ambiental, mesmo nos períodos de baixa pluviosidade. Sabe-se, no entanto, por simulações, que o “cobertor” do estoque nos reservatórios existentes e os possíveis de construir será curto e as térmicas convencionais (óleo, gás natural ou biomassa) deverão ser acionadas para absorver o déficit sazonal ou déficits de chuva plurianuais.  

Parece obvio que a modelagem do sistema elétrico brasileiro para produção, transporte e distribuição de energia e sua comercialização deve ser decidida com base nas peculiaridades brasileiras e não na utilização, sem a devida adaptação, de conceitos “importados” do Reino Unido.  A ideologia de liberalização vem, historicamente, experimentando altos e baixos na economia brasileira. Mesmo respeitando a ideologia liberal (atualmente em alta), é necessário o entendimento do sistema brasileiro e não simplesmente arremedar as práticas comerciais de outro país.

Na composição atual do Operador Nacional do Sistema Elétrico participam representantes das empresas geradoras; o ONS pode, portanto, sofrer grande influência dessas empresas em detrimento do melhor interesse dos consumidores. Seria melhor que fosse um órgão de governo composto de funcionários de carreira trabalhando em sistema aberto tipo bolsa de valores com painéis que demonstrassem suas decisões em plenário onde os representantes das empresas pudessem estar presentes, o que agregaria maior transparência ao sistema.

Os leilões da ANEEL – Agencia Nacional de Energia Elétrica, deveriam ser realizados entre os produtores de energia da mesma fonte energética de produção e não uma competição geral entre fontes diferentes como no sistema atual, de inspiração importada. Para cada fonte primária de produção de energia seriam alocadas cotas de fornecimento de energia que comporiam o “mix”, estrategicamente planejado, para garantir o suprimento de eletricidade ao menor preço médio possível e minimizando o impacto ambiental.

Uma “frase de impacto” de um influente assessor governamental à época da implantação do sistema administrativo gerencial econômico do setor elétrico nacional, que havia participado da elaboração do Programa Computacional New Wave para auxilio nas decisões para operação do sistema elétrico, resume, deste modo, a lógica de prioridade no “despacho” das usinas (fontes) produtoras de eletricidade: “não interessa se trata – se de combustível de cocô de galinha ou fusão nuclear o que interessa é o preço da energia”. Esta frase revela a mentalidade financeira e visão curta de quem entende muito pouco de planejamento energético particularmente em se tratando de um sistema elétrico com as características do Sistema Integrado Nacional. Ela sintetiza a miopia de um gerenciamento focando exclusivamente o aspecto contábil em curto prazo e não o comportamento anual e plurianual do sistema objetivando a segurança do fornecimento e o menor preço médio da energia.

No Brasil, a produção de energia para o atendimento continuo da “base de carga” pode ser entendida como sendo a energia produzida pelas hidroelétricas, usando a média anual do caudal mínimo dos rios que as alimentam, adicionando também a média mínima da energia produzida pelas fontes eólica e solar acrescida pela energia produzida pelas usinas termo- elétricas de menor preço (nucleares e a carvão) operando em produção anual continua . Os picos diários de demanda, ou seja, o “segmento de carga” deve ser prioritariamente atendido com o estoque regulador de energia constituído pela água dos reservatórios. As hidroelétricas têm a capacidade de “seguir a carga” com mais facilidade e economicidade do que as usinas térmicas.

As usinas termoelétricas a gás e óleo são construídas com menor valor de investimento, mas funcionam com o combustível de maior preço resultando em alto preço na energia elétrica produzida. Não é aconselhável que essas usinas operem continuamente ao longo do ano. Quando não estão produzindo energia são remuneradas pelo retorno do investimento acrescido do custo operacional nesta condição e lucro. Quando solicitadas a operar pelo Operador Nacional do Sistema recebem o adicional pela energia efetivamente produzida. É assim, mas isto é vantajoso para quem?

Para funcionar produzindo grandes “blocos de energia” em regime continuo na “base de carga” as usinas térmicas que produzem energia a menor preço por Megawatt-hora são as usinas nucleares e as usinas convencionais que usam carvão como combustível.

O Brasil é prodigo em reservas de urânio e detém a tecnologia de todas as etapas do ciclo combustível nuclear desde a mineração e produção do Yellow Cake até a finalização do elemento combustível para ser usado nos reatores, passando assim por todas as etapas do ciclo do combustível nuclear. Nosso País consta da pequena lista de países que dominam a tecnologia de enriquecimento de urânio e dispõe de grandes reservas de urânio. Somente os Estados Unidos, Rússia e Brasil fazem parte desta pequena lista. Todos os demais países ou dispõem da tecnologia do ciclo do combustível nuclear ou são detentoras de reservas de urânio ou nenhuma das duas condições e pagam por isso quando é compensador.

Países sem grandes fontes de combustível como o Japão e a França dificilmente poderão prescindir da utilização da energia nuclear que pode proporcionar estoque plurianual de combustível a preços competitivos e pequeno volume de armazenamento.

Quando for feita a reformulação correta e competente do sistema elétrico brasileiro ficará evidente a necessidade utilização continua em base de carga das usinas núcleo-elétricas ficando para uso apenas ocasional (quando houver necessidade) as usinas termo elétricas convencionais a óleo e gás para completar a produção de energia em poucos meses do ano. Em virtude do grande investimento necessário, o ritmo de construção das usinas nucleares deve ser compatibilizado com as necessidades de fornecimento de energia em base de carga que assegure a existência do estoque regulador de energia adequado.

O completo entendimento do conceito de utilizar o volume de água nos reservatórios das hidrelétricas no sistema elétrico como “estoque regulador de energia” permitirá minimizar o preço médio da energia elétrica, o impacto ambiental e maximizar o uso das fontes energia renováveis menos poluentes.

8.    O Futuro da Energia Nuclear no Brasil

Deve-se ter em vista que o consumo de eletricidade continuará crescendo e que a situação atual é uma única exceção (em 50 anos) em que repetimos em 2018 o consumo de 2014. O estoque máximo de água nos reservatórios se manteve constante desde o inicio na década de 1990. A melhor forma de garantir o estoque regulador de água é considerar como energia de “Base de Carga Hidroelétrica” o caudal mínimo anual dos rios e usar usinas nucleares que são as termoelétricas de menor preço da energia (comparando-se com as demais termoelétricas) para compor a “base de carga de energia elétrica”. As grandes reservas nacionais de urânio estimulam a adoção desta opção.

A Eletronuclear desenvolveu em parceria com a COPPE, Coordenadoria de Pós-Graduação em Engenharia da Universidade Federal do Rio de Janeiro com a ótica da “segunda era nuclear” um importante estudo de localização para construção de centrais nucleares no Brasil. As conclusões desse estudo foram divulgadas sob a forma de palestras pela Empresa. Tal estudo iniciou-se pela seleção dos locais para construção que atendem a uma extensa lista de requisitos (mais de dois mil) priorizando a segurança nuclear. Foram selecionadas quarenta opções de localização que atendem a todos os requisitos.

Cada central núcleoelétrica planejada neste estudo, ao final de sua construção, teria capacidade para comportar seis usinas nucleares tipo PWR com cerca de 1200 Megawatts que seriam construídas sequencial e paulatinamente. É recomendável que o inicio da construção de cada usina da mesma central seria defasado de cerca de um ano e meio do inicio da construção da usina anterior para otimizar a utilização da mão de obra e minimizar o preço total da construção de cada central.

Considera-se aqui que a decisão sobre a possível implantação dessas centrais seria tomada no planejamento energético global, mas os possíveis locais já estariam determinados.

Naquele estudo, foi feita a opção por usinas dotadas reatores PWR modernos com sistema de segurança passiva aprimorada que não necessitam de energia externa para remoção do calor residual produzido pelos núcleos dos reatores após o desligamento com a interrupção da reação nuclear em cadeia.

O conceito de segurança passiva aprimorada prevê que o calor residual de um reator nuclear depois do desligamento súbito, que no primeiro momento, se constitui em cerca de 2,3% da energia que o reator vinha produzindo antes da interrupção da reação nuclear em cadeia e decresce rapidamente ao longo de quarenta e oito horas para valores mínimos seja absorvido sem a necessidade de existir um sistema independente de remoção de calor que utilize energia elétrica como ocorre na maior parte das usinas nucleares atualmente existentes.

 Os modernos reatores PWR são projetados para que a dissipação desta energia residual produzida pelo núcleo do reator seja realizada por circulação natural por convecção da água no circuito primário da usina tornando-se desnecessária a utilização de energia elétrica de fonte não nuclear externa para assegurar a remoção do calor residual.

Ao término da construção, cada Central Nuclear composta de seis usinas teria a potência total instalada de sete mil e duzentos megawatts e podendo operar com o fator de capacidade de 0,9. Cada uma dessas centrais nucleares, quando dotadas das seis usinas, produziria mais energia do que a soma das energias produzidas pelas hidrelétricas da empresa Furnas ou da empresa CHESF- Centrais Hidrelétricas do São Francisco ou a metade da energia anual gerada pela usina de Itaipu.

A retomada do crescimento econômico brasileiro implicará necessariamente em aumento do consumo de eletricidade e tornará ainda mais evidente a necessidade de aumentar utilização de termoelétricas nucleares na ”base de carga” produzindo “grandes blocos de energia”. Caso seja mantida a atual intensa utilização de usinas termoelétricas convencionais a óleo e gás o alto preço da eletricidade atualmente praticado tenderá a aumentar.

Qualquer nova usina nuclear, prevista para ser construída, deverá ser planejada com a ótica da “segunda era nuclear” que prioriza a segurança e entende a energia nuclear não como sendo “a solução” para produção de eletricidade e sim com uma fonte complementar primária de produção de energia com segurança que não pode deixar de participar de um “mix” de fontes produtoras para assegurar a garantia no fornecimento de eletricidade com economicidade e minimizando os impactos ambientais.

O planejamento da geração nuclear tem que ser parte do programa de longo prazo de geração de energia para o Brasil. A periodicidade atual (planos decenais) é inadequada para isso. Em termos de planejamento energético nacional, dez anos constituem um prazo curto. O ciclo de planejamento e construção de uma instalação de grande porte produtora de energia e linha de transmissão associada é da ordem de dez anos de acordo a pratica internacional e frequentemente um empreendimento de porte escapa ao ciclo de dez anos. O lançamento do plano de longo prazo vem sendo sucessivamente adiado pelo Governo Federal.

Para o importante setor nuclear torna-se necessário:

  1. Terminar a construção da Usina Nuclear Angra 3 da Central Nuclear Álvaro Alberto em Angra do Reis.
  2. Decidir o local da construção de uma ou até mesmo duas centrais nucleares, com a possível brevidade, selecionando sua localização entre as quarenta localizações recomendadas nos estudos realizados pela COPPE e a Eletronuclear que sejam mais convenientes para atender as necessidades do Sistema Integrado Nacional. Com isto, não se perderia o conhecimento acumulado na área por técnicos altamente especializados.
  3. Decidir, a programação da construção das usinas dentro de um planejamento global, idealmente, com o início da construção da primeira central até 2022. É possível custear, ao menos parcialmente, a construção das usinas nucleares com a “venda futura de energia” garantida por acordos de governo, porém mantendo a propriedade e responsabilidade da estatal brasileira pela propriedade, operação e descomissionamento das usinas nucleares[6].
  4. Construir a instalação de armazenamento intermediaria de rejeitos da Central Nuclear Álvaro Alberto e o módulo de demonstração experimental da Instalação para estocagem, em longo prazo, de combustível nuclear queimado. Este novo conceito de estocagem concebido na Eletronuclear permite estocar por mais de quinhentos anos todo o combustível nuclear utilizado em todas as centrais nucleares brasileiras com total segurança e baixo preço, usando a remoção do calor residual por circulação natural e permitindo monitoramento seguro, simples, constante e de baixo custo. Esta solução é tecnologicamente muito mais avançada do que o antigo conceito de deposição dos rejeitos nucleares em grandes profundidades em locais teoricamente considerados estáveis que foi preconizado durante a “primeira era nuclear” e que na realidade significa “colocar o lixo debaixo do tapete”, embora essa concepção ainda conte com grande número de adeptos.
  5. Aprimorar a operação e ampliar as instalações da INB – Indústrias Nucleares do Brasil de forma que em um prazo máximo de dez anos sejam atendidas as necessidades de combustível nuclear para alimentar as usinas nucleares que estiverem em funcionamento no País.
  6. Ampliar a responsabilidade da INB para ser encarregada do transporte e armazenamento do combustível nuclear queimado dos reatores e posteriormente, quando for economicamente recomendável para o Brasil, reprocessar o combustível nuclear queimado[7], e manter a estocagem monitorada dos rejeitos usando o provavelmente as mesmas instalações construídas em região adequada para o armazenamento intermediário, no longo prazo, do combustível nuclear queimado.
  7. A CNEN – Comissão Nacional de Energia Nuclear completará a construção do RMB – Reator de Multipropósito Brasileiro em Iperó, São Paulo, para atender as necessidades nacionais de radioisótopos, testes de materiais e combustíveis e experiências conjuntas com centros de pesquisa e universidades.
  8. Ampliar a prospecção de Urânio em território nacional.
  9. Incluir nas responsabilidades da INB a comercialização e gestão do estoque de urânio para atender as necessidades nacionais. A INB passaria a ter a atribuição de adquirir no Brasil a preços do mercado internacional em longo prazo o Yellow Cake que as mineradoras que operam no país decidirem produzir a partir do conteúdo de urânio nos minérios que exportam.
  10. Dar prosseguimento ao programa de submarinos com propulsão nuclear e, consequentemente, a todas as atividades em desenvolvimento em Aramar.

Bibliografia

AIEA. 2015. The Fukushima Daiichi Accident – Report by Director General . Viena : AIEA, 2015.

Alvin, Weinberg M. 1997. The First Nuclear Era: The Life and Times of a Technological Fixer Hardcover. s.l. : American Institute of Physics; 1994 edition , 1997. ISBN-13: 978-15639635.

Arms Control Association. 2018. Nuclear Weapons: Who Has What at a Glance. [Online] june de 2018. https://www.armscontrol.org/factsheets/Nuclearweaponswhohaswhat.

Atomic Archive. Timeline of the Nuclear Age. Nuclear Pathways. [Online] http://www.atomicarchive.com/Timeline/Time1930.shtml.

  1. 2018. BP Satistical Review of World Energy, 67th Edition. s.l. : BP, 2018.

Brawn, Paul. 2003. First nuclear power plant to close. The Guardian. [Online] Mar de 2003. https://www.theguardian.com/uk/2003/mar/21/nuclear.world.

CEPEL Eletrobras. 2001. Atlas do Potencial Eólico Brasileiro (2001). CRESESB. [Online] 2001. http://www.cresesb.cepel.br/index.php?section=publicacoes&task=livro&cid=1.

Craddock III, Jack. 2016. The Shippingport Atomic Power Station. [Online] 2016. http://large.stanford.edu/courses/2016/ph241/craddock1/.

Eletrobras. 2017. MapaSipot-Dezembro2017. [Online] dez de 2017. http://eletrobras.com/pt/AreasdeAtuacao/geracao/sipot/MapaSipot-Dezembro2017.pdf.

European Nuclear Society. Nuclear power plants, world-wide. euronuclear. [Online]

ONS. Mapa Dinâmico do SIN. Operador Nacional do Sistema Elétrico. [Online] http://www.ons.org.br/paginas/sobre-o-sin/mapas.

topographic.mapa.com. Brasil . topographei.mapa.com. [Online] http://pt-br.topographic-map.com/places/Brasil-3559915/.

  1. 1971. United Nations, General Assembly – Twenty-sixth Session. Restoration of the lawful rights of the Peoples’s Republic of China in United Nations. [Online] 25 de October de 1971. http://www.un.org/en/ga/search/view_doc.asp?symbol=A/RES/2758(XXVI).

____________________

Notas:

[1] 1938 (Dezembro) Fermi recebe o prêmio Nobel pela descoberta de “elementos transurânicos”, na verdade fissão de urânio e parte para os EUA. (22 deDezembro ) Otto Hahn envia texto para Lise Meiner com resultados experimentais que são interpretados por Meiner e seu sobrinho Otto Frish como fissão nuclear.  
1939 (6 de janeiro) Hahn e seu assistente Fritz Strassmann publicam seus resultados; (11 de Fevereiro)  Meitner and Frisch publicam a interpretação teórica dos resultados de Hahn-Strassmann como fissão nuclear .

[2] União Soviética 1949, Reino Unido 1952, França 1960 e China em 1964.

[3] Cerca de 14.570 ogivas sendo que 13.400 em poder de Rússia e EUA, conforme avaliação da Arms Control Association https://www.armscontrol.org/factsheets/Nuclearweaponswhohaswhat

[4] Nota: Vale a pena acessar os mapas mostrados na Figura 3. Os mapas permitem o zoom para examinar detalhes. É possível, no segundo mapa, ler a altitude do famoso encontro das águas dos rios Negro e Solimões, perto de Manaus. Onde a altitude é de 7m em relação ao mar. Isto faz com que o aproveitamento hidroelétrico do Rio Amazonas propriamente dito, formado deste encontro das águas, seja praticamente inviável para centrais de porte.

[5] Em alguns países do mundo são usadas usinas reversíveis, sendo a água de um reservatório bombeada para reservatórios a montante para armazenar energia excedente de outras usinas. Isto exige um considerável investimento que mesmo assim pode ser viável. Im considerável investimento que o Brasil ainda consegue evitar, mas pode ser uma alternativa às baterias para “armazenar vento” ou energia fotovoltaica.

[6] Na Bélgica, em uma mesma central existem usinas de diferentes proprietários o que nos sugere diferentes financiadores compradores de blocos de energia futura a ser produzida em uma mesma central nuclear brasileira. O financiamento da construção de usinas nucleares com o pagamento com a energia a ser produzida implicará na adoção de legislação que garanta a compra, o preço futuro da energia, sua correção inflacionaria e garantia cambial.

[7] Essa posição coincide com a adotada pela Política Nuclear Brasileira (Decreto Nº 9600 de 05/12/2018) e tem o significado de que o Brasil considera a energia contida no combustível utilizado aproveitável no futuro e baliza a definição do tipo de armazenamento a ser adotado que é muito importante na fase atual.

Repensando o Sistema Elétrico Brasileiro

Prévia da Revista E&E Nº 102 

Palavra do Editor:

REPENSANDO O SISTEMA ELÉTRICO BRASILEIRO

O sistema elétrico brasileiro é sui generis pela predominância de energias ditas limpas, do ponto de vista da emissão de CO2. A nuclear faz parte deste tipo de energia e sua participação é de 3% da geração de eletricidade no Brasil.

A forte participação da energia hidráulica praticamente exigiu a criação de um sistema nacional integrado de eletricidade, administrado de forma centralizada. Esta configuração foi facilitada, até os anos noventa, pelo fato da geração e transporte de energia serem estatais. A gestão desse sistema cabia, na prática, à Eletrobras com suas empresas regionais, com algum contraponto da forte presença de geradoras e distribuidoras estaduais fortes.

A introdução da participação do capital privado nos anos noventa obrigou a mudança de estrutura do setor elétrico. Foi criado um órgão para gerir o Sistema Integrado Nacional Elétrico – SIN e uma agência para normalizar o setor. Empresas estatais foram privatizadas e outras abriram seu capital. Foi abandonada a regionalização das geradoras. Um sistema de leilões passou a reger as concessões. A conjuntura de abertura econômica e as características geográficas dos novos aproveitamentos impediu a construção de grandes reservatórios.

Uma reestruturação do mercado de energia elétrica foi feita sob forte influência do modelo britânico. Esta estrutura foi posta a prova no “apagão” de 2001 e isto abriu mais espaço para as térmicas convencionais na matriz de geração. Posteriormente foi aberto espaço para as novas renováveis, principalmente a eólica, e também para a biomassa. A nova estrutura não tinha preocupação especial com as regiões menos providas dos “três Brasis”. No terceiro Brasil, desprovido das energias integradas, estão as regiões isoladas do SIN onde, paradoxalmente, também estão as grandes possibilidades de geração hídrica futura.

A situação da energia nuclear não foi bem resolvida e continuou dependente de aportes estatais e engessada por uma fixação de tarifas que não possibilita novos investimentos.

As hidrelétricas construídas a partir da década de 1990 e as futuras não possuirão reservatórios significativos e operariam a “ fio d’água” onde a energia produzida é função da capacidade das turbinas instaladas e da vazão momentânea do rio que alimenta cada hidrelétrica sendo, portanto, mais sujeitas aos caprichos da natureza. Neste século tem sido crescente a utilização das fontes eólica, solar e biomassa intrinsecamente dependentes da natureza, aumentando a complexidade de atender e garantir o fornecimento de energia elétrica da maneira mais econômica possível minimizando o impacto ambiental. 

Estamos necessitando de uma nova visão do sistema elétrico brasileiro que leve mais em conta seu caráter tão especial. Para refletir sobre esse assunto, contamos com a colaboração de Othon Pinheiro da Silva, personagem de capital importância na história do desenvolvimento da energia nuclear no Brasil.

O trabalho aqui apresentado resultou de uma demanda feita a ele pelo Presidente do Clube de Engenharia. Procuramos acrescentar alguns detalhes e ilustrações ao trabalho que, fundamentalmente, segue a linha de pensamento do documento originalmente concebido para atender àquela solicitação.

Carlos Feu Alvim

 

Sumário

REPENSANDO O SISTEMA ELÉTRICO.

SISTEMA ELÉTRICO E   ENERGIA NUCLEAR NO BRASIL

Resumo.

Palavras chave:

  1. Energia Nuclear: Explosão Inicial
  2. Energia Nuclear para Gerar Eletricidade.
  3. Energia Núcleo Elétrica no Brasil 
  4. A Tradição Hidroelétrica.
  5. A Reforma do Sistema Elétrico dos Anos 1990
  6. Repensando o Sistema Elétrico. 
  7. Os três Brasis.
  8. O Futuro da Energia Nuclear no Brasil 

Bibliografia

 

 

Opinião:

SISTEMA ELÉTRICO E
 ENERGIA NUCLEAR NO BRASIL

Othon Pinheiro da Silva, Olga Mafra e Carlos Feu Alvim

Resumo

A energia nuclear é a mais recente das fontes energéticas que utiliza a humanidade e está completando oitenta anos.

Sua utilização inicial foi bélica e isto marcou seu futuro. Sua utilização pacífica na geração de energia nuclear se dá principalmente na geração elétrica, mas é também muito relevante o uso de isótopos na medicina. A energia nuclear é hoje reconhecida como caminho eficaz para reduzir a emissão de gases de efeito estufa. Na matriz energética brasileira, ela tem a participação de 3% e permanecerá com uma participação minoritária na matriz energética brasileira nas próximas 3 décadas.

A abertura econômica dos anos de 1990 tentou reorganizar o sistema elétrico de maneira a admitir a maior participação do capital privado e, forçada pelo “apagão de 2001”, incorporou novas fontes de na geração de eletricidade. O sistema adotado, com forte influência do exemplo termoelétrico britânico, apresentou problemas que precisam ser equacionados levando melhor em conta suas características próprias e sua complexidade econômica, geográfica e climática. A impossibilidade construir grandes reservatórios incluiu a energia hídrica entre as fontes sujeitas aos caprichos da natureza como a eólica, solar e biomassa,.

A solução dessas complexidades demanda uma reforma do sistema elétrico que necessita de energia estável de base, onde a nuclear deve colaborar e também para cobrir as oscilações do sistema com melhor uso dos reservatórios e o ocasional uso de fontes térmicas.

Palavras chave:

Sistema elétrico, energia nuclear, geração de eletricidade, gestão, clima.

1.    Energia Nuclear: Explosão Inicial

A energia nuclear é a mais recente entre as fontes disponíveis de energia utilizadas pela humanidade. A descoberta da fissão nuclear ocorreu em 1938/1939 quando Otto Hahn submeteu e publicou seus resultados experimentais e Lise Meitner e Otto Frish completaram a interpretação dos experimentos de Otto Hahn (Atomic Archive). A energia nuclear está, portanto, completando 80 anos de idade[1].

Como a descoberta da fissão nuclear coincidiu com o início da Segunda Guerra mundial, sua primeira aplicação foi bélica. A humanidade tomou conhecimento da energia nuclear em 1945 com os holocaustos de Hiroshima e Nagasaki que provocam até hoje no ideário popular natural rejeição a esta fonte de energia.

Ao terminar a Segunda Guerra Mundial, teve inicio a geopolítica bipolar onde o mundo foi dividido em dois grandes blocos, o Ocidental liderado pelos Estados Unidos e o Bloco Soviético liderado pela então União Soviética (cuja sucessora é a Rússia).

A ONU foi criada em 1945 e os cinco países, considerados os vencedores da Segunda Grande Guerra Mundial, EUA, União Soviética, Reino Unido, França e China, ocuparam os lugares permanentes no Conselho de Segurança da ONU, tendo poder de veto. Não por coincidência, estes mesmos países foram os primeiros a se juntar ao “Clube Nuclear”, entre 1949 e 1964[2]. A China foi, até 1971, representada pelo governo nacionalista de Taiwan. A partir daquele ano, a Resolução 2758 (UN, 1971) da Assembleia Geral da ONU estabeleceu a República Popular da China como representante daquele país na ONU e no Conselho de Segurança.

Foi estabelecida uma corrida armamentista, entre estes dois grandes blocos, que priorizava a fabricação de bombas atômicas e mísseis de longo alcance para transportar as ogivas nucleares. Na década de 1950, as bombas nucleares tiveram sua capacidade de destruição “exponenciada” com o desenvolvimento das bombas nucleares que usam a fusão nuclear (comumente conhecida como Bomba H, de hidrogênio). A corrida armamentista continuou crescendo até que ambos os blocos entenderam o conceito MAD – Mutual Assured Destruction (destruição mutua assegurada). Acordos entre as duas maiores potências e o fim da Guerra Fria levaram a uma sensível redução das ogivas nucleares e a quantidade delas diminuiu. Atualmente, o número está estável, mas ainda foi mantido um considerável estoque mundial de bombas [3].

Os cinco componentes do “Clube Nuclear” são membros permanentes do Conselho de Segurança e cada uma das cinco potências tem a prerrogativa de vetar as resoluções da ONU. Posteriormente, Israel (veladamente), Índia, Paquistão e Coreia do Norte agregaram armas atômicas aos seus arsenais, mas sem adquirir o “status” de “nuclear weapon states” no Tratado de Não Proliferação Nuclear – TNP ou de membro do Conselho de Segurança da ONU.

Figura 1: Evolução das ogivas nucleares nos EUA.

Em 1965, o estoque de armas nucleares nos EUA havia superado as 30.000 ogivas, logo após a crise dos mísseis em Cuba (Figura 1). A partir daí, houve uma gradual redução dos arsenais tanto dos EUA como da União Soviética com acordos de desarmamento a partir de 1991. Seguiu-se a dissolução da União Soviética e os estoques de armas nucleares se estabilizaram a partir de 2010. Sabe-se menos a respeito da evolução dos estoques da extinta União Soviética. Rússia e EUA teriam, em 2018, um arsenal um pouco superior a 6.500 ogivas cada (Arms Control Association, 2018).

2.    Energia Nuclear para Gerar Eletricidade

Já no início dos anos sessenta, com o início do arrefecimento da grande corrida armamentista bipolar mundial houve mais espaço para aplicações pacíficas. Surgiram usinas nucleares incorporadas à rede de distribuição. As primeiras parecem ser a de Obninsky APS-1 que em 1954 teria se conectado, com 5 MW, à rede, a de Sellafield (Calder Hall) no Reino Unido, que iniciou seu funcionamento em 1956 com capacidade inicial de 50 MW, depois aumentada para cerca de 200 MW (European Nuclear Society), e que seria também a primeira a ser descomissionada  (Brawn, 2003) e a Shipping Port Atomic Power com 60 MWe da Duquesne Light Company  (Craddock III, 2016) nos Estados Unidos que, de acordo com a US Nuclear Regulatory Comission, foi a primeira projetada para uso comercial, tornando-se operacional em 1957.

A partir de 1962, a tecnologia nuclear começou a ter sua utilização ampliada na geração de energia elétrica e se iniciou um período de grande euforia, denominado por Weinberg como a “primeira era nuclear” (Alvin, 1997) onde inicialmente havia a utopia de que seria possível produzir grandes quantidades de energia elétrica a preços ridiculamente baixos com a fonte nuclear. No final da década de 1960, iniciou-se a conscientização da realidade dos preços.

O incidente ocorrido na usina de Three Mile Island, dia 28 de Março de 1979, em Harrisburg Pensilvânia nos Estados Unidos, embora não tenha causado praticamente nenhum dano humano ou material, serviu de alerta para o que deveria ser aprimorado nos conceitos de operação e segurança das usinas nucleares. Esse alerta provocou modificações em todas as usinas nucleares que usavam reatores tipo PWR – Pressurized Water Reactor, aumentando sua segurança.

Entretanto já existiam outras usinas nucleares com reatores de tecnologia menos segura como os reatores RMBK de Chernobyl, Ucrânia e também usinas em cuja instalação não haviam sido respeitadas as boas normas internacionais de segurança em sua localização, particularmente, na sua cota de posicionamento em relação ao nível do mar como ocorreu em algumas das usinas BWR- Boiling Water Reactor , que foram construídas na Central Nuclear de Fukushima, Japão. Uma descrição do ocorrido foi publicada pela AIEA (AIEA, 2015).

As usinas da Central Nuclear Fukushima foram construídas em uma cota baixa relativa ao nível do mar. A cota do protetor marinho foi fixada em 5,5 m a partir de avaliações disponíveis na época. Uma reavaliação do órgão superior que cuida de terremotos no Japão, anterior aos eventos, modificou para cima o nível de terremoto que poderia ser esperado na região bem como a altura da onda do Tsunami. A Tokyo Electric Power Company – TEPCO, proprietária da Central, não mudou as especificações das usinas nem foi forçada a isto pelo órgão regulador nuclear japonês. Com isso, a cota da usina era inferior à altura para resistir à onda máxima prevista na reavaliação. A previsão dessa reavaliação estava próxima da que realmente atingiu a Central (cerca de 10m) .

As instalações diesel geradoras de energia em emergência existem em todas as usinas nucleares para prover a energia elétrica necessária para operar o sistema de remoção do calor residual dos núcleos dos reatores nucleares após o seu desligamento. Em Fukushima, em virtude de insuficiente altura em relação ao nível do mar, estas instalações, auxiliares porem muito importantes, foram alagadas pela onda causada pelo tsunami e ficaram inoperantes.

O não funcionamento do sistema de remoção do calor residual levou a fusão de alguns dos núcleos dos reatores da Central. Todas as usinas nucleares são dotadas de sensores de vibração e acelerômetros que provocam a interrupção do funcionamento e desligamento das usinas quando ocorrem terremotos mesmo de baixa intensidade.

A analise posterior da central de Fukushima indicou que as usinas, sob o ponto da integridade das suas estruturas, tubulações e equipamentos resistiram bem ao terremoto que foi maior do que o terremoto com as características para o quais foram projetadas. A Central Nuclear de Fukushima se encontra localizada a pouco mais de noventa milhas náuticas do encontro de três placas tectônicas que transforma aquela região em um dos locais mais instáveis sob o ponto de vista da sismologia e, por via de consequência, muito sujeita a grandes terremotos e tsunamis. O acidente evidenciou o posicionamento das instalações diesel geradoras de emergência em altura insuficiente em relação ao nível do mar. Não foram devidamente consideradas, no projeto, as peculiaridades locais causadas pela proximidade do encontro de placas tectônicas.

À inoperância dos geradores de emergência á diesel (só um da unidade 6 não foi atingido) e das baterias de emergência, em 3 delas, provocaram os piores acidentes (derretimento do elemento combustível e vazamento do vaso de contenção). Deve-se notar que não houve vazamento significativo de plutônio como no caso do acidente de Chernobyl. Isso pode contribuir para tornar possível a recuperação, no médio prazo, de boa parte da área atingida.

3.    Energia Núcleo Elétrica no Brasil

A decisão brasileira, no inicio da década 1970, de construir a Usina Nuclear Angra 1 e posteriormente a decisão de assinar o Acordo Nuclear Brasil Alemanha em 1975, não foi bem assimilada pelo setor elétrico de então que naturalmente tinha cultura fortemente hidrelétrica pelo fato desta fonte, até então, atender perfeitamente às necessidades de demanda de energia elétrica brasileiras.

Em decorrência do Acordo Nuclear Brasil Alemanha, de 1975, foi programada a construção de mais duas usinas em Angra dos Reis (2 e 3) e ainda a construção de mais duas usinas no litoral sul do Estado de São Paulo.

Naquela época, a opção nuclear se constituiu numa decisão de cúpula em um regime de exceção, ainda inspirada na utopia de produção de energia elétrica a preços muito baixos. A influência de fatores ligados à geopolítica foi também fator importante. A crise mundial causada pelo grande aumento do preço do petróleo em 1973 foi utilizada como motivadora da decisão.

4.    A Tradição Hidroelétrica

A determinação governamental, na década de 1970, de incorporar energia nuclear ao sistema elétrico foi imposta ao setor elétrico em paralelo com um grande programa de construção de hidrelétricas já em curso. Este, embora contasse com a aprovação do setor elétrico, teve seu dimensionamento decidido no mesmo regime verticalizado de decisão. Esse programa hidroelétrico previa o aproveitamento de praticamente todas as possibilidades de construção de hidrelétricas nos rios situados na região que se estende do Vale do Rio São Francisco até Itaipu. Foram grandes os investimentos no setor elétrico nesta época, um dos setores que mais recebeu investimentos no Brasil. O grande crescimento anual do PIB – Produto Interno Bruto naquele período e a atratividade político/empresarial das obras foram estimuladores deste grande investimento setorial.

A região acima mencionada era muito convidativa para construção de hidrelétricas, pois é geologicamente estável, localizada no meio de uma grande placa tectônica, dotada de oportunidades de aproveitamentos hidrelétricos em locais que já haviam sido desmatados em função de ciclos agrícolas e apresentava topografia que permitia a construção de reservatórios com grande capacidade de armazenamento de água. Esta região apresentava um conjunto de características favoráveis à construção e operação de hidrelétricas raramente encontradas em outros locais do nosso planeta.

Na década anterior (de 1960) o sistema elétrico nacional havia sido padronizado em corrente alternada com sessenta ciclos por segundo. Até então, a região de Minas Gerais, São Paulo e Paraná operavam com sessenta ciclos enquanto o Rio de Janeiro operava com cinquenta ciclos. A padronização da ciclagem facilitou a integração do sistema elétrico nacional onde as maiores fontes geradoras, as hidrelétricas, têm suas localizações definidas pela natureza e não pelo homem.

Ao longo da década de 1980, as hidrelétricas atendiam plenamente a demanda de eletricidade. O estoque de água nos reservatórios dessas usinas complementava o fornecimento de água necessário ao funcionamento satisfatório das turbinas nos meses do ano em que as vazões dos rios eram menores do que a demanda de energia elétrica, mesmo nos ciclos pluviométricos de seca na região central do Brasil onde estão localizadas as nascentes e os rios que alimentam grande parte do sistema hidrelétrico nacional.

Nas décadas de 1980 e 1990, as hidrelétricas que haviam sido construídas depois do racionamento na década de 1960 continuaram satisfazendo à demanda de eletricidade mesmo nos anos mais secos dos ciclos pluviométricos plurianuais que, historicamente, parecem se repetir com a periodicidade de cerca de dez a doze anos aproximadamente.

A partir da segunda metade da década de 1980, o sistema elétrico começou a apresentar problemas em termos administrativos e gerenciais. Havia inadimplência de uma estatal em relação à outra e muita interferência do setor político. É emblemático o desafio do Governador Orestes Quércia de São Paulo ao Presidente de Furnas (e anteriormente Ministro) Dr. Camilo Pena: Face à inadimplência por parte do Estado de São Paulo, o Governador tranquilamente desafiou o Presidente de Furnas sugerindo, ironicamente, “desligar São Paulo”. O assunto foi afinal resolvido pela interferência de pessoas sensatas.

Em alguns Estados da Federação havia empresas estatais estaduais que produziam, transmitiam e distribuíam a energia elétrica e também recebiam energia das empresas estatais nacionais pertencentes à ELETROBRAS. Não havia a separação administrativa empresarial entre a produção de energia por atacado nas hidroelétricas, a transmissão (o transporte a distância da energia) e a distribuição ao utilizador final, ou seja, o varejo. A influência político partidária cresceu demais e passou a comprometer o funcionamento de todo o sistema.

5.    A Reforma do Sistema Elétrico dos Anos 1990

Na década de 1990, estava evidente a necessidade de reformatação administrativa gerencial do sistema elétrico nacional e a economia brasileira foi atingida por uma onda de liberalismo. Foi contratada então a participação de uma empresa consultora do Reino Unido para tratar da reformulação e regulamentação do sistema elétrico nacional. O sistema elétrico Inglês, ao qual os consultores estavam acostumados, era prevalentemente térmico e com características completamente diferentes do sistema brasileiro. Na reestruturação, pós Margaret Thatcher, do sistema elétrico do Reino Unido em 1983 foi introduzido na regulamentação o conceito de competição e houve grande privatização das empresas participantes do fornecimento da energia elétrica produzida e distribuída no Reino Unido.

O sistema elétrico inglês nos anos noventa era quase inteiramente termoelétrico e muito dependente da utilização do carvão que estava começando a ser substituído por gás natural. O funcionamento das centrais que utilizam estes combustíveis é bastante independente de ciclos da natureza e praticamente sujeito somente ao planejamento e controle humano. A fonte hídrica representava apenas cerca de 2,5% do total da energia produzida naquele país.

O grupo de consultores ingleses tinha o “DNA” termoelétrico e era, logicamente, orientado pelas ideias de liberalização da economia, privatização e competição. Esta “escola de pensamento” contribuiu para que este “DNA” da onda econômica pós Margareth Thatcher fosse fortemente “miscigenado” na formulação da regulamentação do sistema elétrico brasileiro, majoritariamente hidrelétrico, que necessita compatibilizar o planejamento de sua operação com as variações do sistema pluviométrico controlado pela natureza e não pelo homem como é o sistema térmico do Reino Unido.

Um estudo adequado que fosse realizado por grupo competente e analisasse as características e as peculiaridades do sistema elétrico brasileiro e se preocupasse, não somente, em seguir as regras de comercialização da economia liberal, teria identificado que o estoque máximo de água nos reservatórios das hidrelétricas brasileiras havia se mantido constante desde a década de 1980 enquanto o consumo de energia elétrica naturalmente continuou crescendo e isto certamente repercutiria no planejamento e na operação do sistema elétrico brasileiro, predominantemente hidroelétrico. Ou seja, a reforma implantada nos anos 1990 não peca por seu caráter liberal – cuja discussão é importante está em uma esfera mais ampla – mas por não haver levado devidamente em conta a natureza física do sistema elétrico existente.

Em 2001, o país vivia um período de pouca pluviosidade e os reservatórios das hidrelétricas se encontravam praticamente vazios. O Brasil foi então “surpreendido pelo obvio” e tornou-se necessário o racionamento de energia elétrica que “a mídia” apelidou de “apagão”.

Na realidade o “apagão elétrico” havia sido precedido de um “apagão de competência” ao não se entender, por quase uma década, que o aumento e a transformação do consumo implicariam em modificações compatíveis na produção e na transmissão de eletricidade no Brasil.

A Usina Nuclear Angra 1 havia sido fornecida pela Westinghouse e iniciou seu funcionamento comercial em dezembro de 1984. Infelizmente, principalmente por falhas técnicas de projeto, apresentou baixo nível de desempenho ao longo das décadas de 1980 e 1990. Razões financeiras fizeram com que a Usina Nuclear Angra 2 tivesse desacelerada sua construção e o início da sua operação comercial somente ocorresse em fevereiro de 2001. Estes fatos contribuíram para a descrença dos executivos do sistema elétrico em relação à opção nuclear. Até o inicio do funcionamento comercial da Usina Nuclear Angra 2 o “sistema elétrico” associava energia nuclear unicamente a grandes investimentos e baixo desempenho.

Esse mesmo “sistema elétrico” reconheceu, no entanto, que sem a entrada em funcionamento comercial da Usina Termonuclear Angra 2 com 1300 MW de potência elétrica, no início de 2001, o “apagão elétrico” teria sido ainda maior.

Em consequência do “apagão”, imediatamente foi decidida a construção de termoelétricas que usam como combustível óleo ou gás e que apresentavam menor investimento inicial e menor prazo de construção.

As termelétricas que foram construídas a partir do “apagão” têm contribuído para garantir a continuidade no fornecimento de eletricidade independentemente das variações do regime pluviométrico, mas provocam excessivo aumento do preço médio da eletricidade ofertada ao consumidor, sobretudo porque, ao menos substancial parcela delas tem sido operada continuamente (na base de carga). Desconsidera-se também o aumento da emissão de gases de efeito estufa, ignorando compromissos assumidos internacionalmente pelo País.

A experiência internacional demonstra que termoelétricas para funcionarem continuamente “na base de carga” devem ser preferencialmente termoelétricas convencionais, usando carvão como combustível, ou usinas nucleares. As usinas convencionais a carvão são responsáveis por 38% da energia elétrica produzida no mundo, as térmicas a gás natural representam 23% e o óleo combustível apenas 3%. A contribuição mundial total das usinas hidrelétricas é da mesma ordem de grandeza (16 %) da contribuição da fonte nuclear (10 %) e a das fontes renováveis (8%).

A Figura 2 ilustra a enorme diferença da distribuição das fontes energéticas usadas na geração de energia que, por sua natureza completamente diversa da média mundial tem que ser administrado de uma maneira também diferente.

 

Óleo

Gás Natural

Carvão

Nuclear

Hidro

Reno-váveis

Outros

Brasil

3%

11%

4%

3%

63%

17%

0%

Mundo

3%

23%

38%

10%

16%

8%

1%

Fonte: BP stats-review-2018-all-data (dados referentes a 2017 (BP, 2018)

Figura 2: Comparação das estruturas de geração de eletricidade no Brasil e no mundo mostrando a peculiar estrutura brasileira,

Embora ainda muito menor do que faz acreditar sua divulgação, tem sido crescente a contribuição da energia renovável, principalmente eólica, mas também solar na produção de energia elétrica no Brasil e no mundo. A energia eólica mais a solar representaram em 2017 8% no mundo e 7,3% no Brasil. É destaque no Brasil a participação da biomassa que representa cerca de 9% da geração elétrica (na Figura 2, incluída entre as renováveis).

O desenvolvimento da tecnologia, com o uso de redes elétricas inteligentes, indica a tendência ao crescimento na utilização da energia eólica e também da energia solar na produção de energia elétrica brasileira, respeitando, evidentemente, suas características de fontes intermitentes e, portanto, dependentes de complementação.

6.    Repensando o Sistema Elétrico

Parece necessário repensar e reestruturar o sistema elétrico brasileiro, fundamentado em práticas comerciais não condizentes com as peculiaridades brasileiras, que atualmente mantém quase as mesmas bases estabelecidas na década de 1990. A revisão do planejamento do sistema elétrico certamente tenderá incorporar os avanços tecnológicos e a maior utilização das redes inteligentes.

Na reestruturação do sistema elétrico brasileiro, as necessárias modificações na operação e comercialização devem ser compatibilizadas com as características das fontes primárias nacionais de produção de eletricidade e também com o tipo de distribuição geográfica e peculiaridades da demanda de energia.

O varejo, ou seja, a distribuição final da energia elétrica em média e baixa tensão ao consumidor, após as subestações rebaixadoras de tensão, é praticamente independente da fonte produtora de energia. Trata-se de atividade administrativa e gerencial muito dinâmica normalmente melhor executada por empresas privadas em regime de concessão. Esta atividade pode ser fracionada para evitar grande concentração de poder em uma única empresa distribuidora em grande área do território nacional.

A lógica pode indicar que as empresas privadas, “responsáveis pelo varejo”, ou seja, pela entrega da energia elétrica ao consumidor final, tenham a sua sede no município embora possam ter como acionistas majoritários empresas “holding” que não tenham sede no município. É desejável que nas empresas distribuidoras municipais de energia uma pequena percentagem de suas ações seja de propriedade de moradores no município e que comprariam e também venderiam suas ações ao “preço de face das ações”. É importante que o representante deste grupo minoritário faça parte do conselho administrativo da empresa municipal. Em caso de “holding” controladora, obrigatoriamente um dos membros do conselho de administração, deveria pertencer a secretaria de energia do estado. A proximidade do entregador da energia com o cliente tende a aprimorar esse atendimento. Um bom exemplo de funcionamento deste sistema é o Município de Belmont no Estado de Massachusetts, Estados Unidos.

A distribuição final da energia por companhia com a sede situada no município contribui para aumentar a renda municipal e diminuir a “exportação” de capital da comunidade utilizadora final de energia para outros lugares.

A prioridade do sistema elétrico nacional certamente deverá ser a garantia e segurança do fornecimento de eletricidade, buscando o menor preço médio do Megawatt-hora (MWh) e a minimização do impacto ambiental.

No planejamento do sistema elétrico é importante considerar que, ressalvada sua grande importância, este setor se constitui um segmento da matriz energética nacional que em seu planejamento deverá levar em consideração a eficiência e economicidade de utilização dos insumos energéticos.

O biênio fundamental dos cursos de engenharia inclui  cursos de termodinâmica que nos ensinam que a transformação de energia química ou térmica em energia mecânica apresenta sempre modesta eficiência. A utilização do gás e derivados de petróleo em aplicações “mais nobres” como são os meios de transporte, por sua portabilidade, na petroquímica, por serem praticamente insubstituíveis, ou no aquecimento direto industrial e domiciliar onde a termodinâmica mostra que a eficiência da transformação da energia química em energia térmica é muito alta.

No planejamento da matriz energética nacional parece lógico priorizar os combustíveis encontrados no território brasileiro e utilizar nas usinas termoelétricas que operam em regime continuo sempre que possível urânio ou até mesmo carvão procurando sempre minimizar o uso de gás e derivados de petróleo para garantir seu emprego em suas aplicações mais nobres ou até mesmo na exportação.

7.    Os três Brasis

É muito importante que haja o entendimento que o Brasil, do ponto de vista do consumo de eletricidade, é um país com 214 milhões de habitantes e dimensões continentais com diferentes regiões climáticas onde convivem na mesma área geográfica total “três Brasis” com características diferentes:

O “primeiro Brasil” é composto de um arquipélago de “ilhas de concentração habitacional e denso consumo de eletricidade”, constituído de (dados de 2017):

  • Duas grandes metrópoles formadas por São Paulo (12 milhões de habitantes e mais 9 milhões com os municípios próximos e vizinhos) e Rio de Janeiro (6,7 milhões de habitantes e mais 2,5 milhões considerando as adjacências).
  • Cinco cidades com mais de dois milhões de habitantes (Salvador – 2,9 milhões, Brasília – 2,85 milhões, Fortaleza 2,57 milhões, Belo Horizonte – 2,94 milhões e Manaus – 2,2 milhões).
  • Dez cidades com mais de um milhão de habitantes (Curitiba -1,86 milhões, Recife – 1,6 milhões, Porto Alegre – 1,47 milhões, Belém – 1,43 milhões, Goiânia – 1,41 milhões, Guarulhos – 1,31 milhões, Campinas – 1,15 milhões, São Luiz – 1,06 milhões, São Gonçalo – 1,0 milhão e Maceió – 1,0milhão).
  • Vinte e cinco cidades com mais de quinhentos mil habitantes.

Este grande “arquipélago brasileiro de centros de denso consumo de eletricidade” demanda “grandes blocos de fornecimento de energia elétrica” que normalmente são produzidos por fontes de alta densidade de produção de energia que são as hidrelétricas, as termoelétricas convencionais e as térmicas nucleares. Uma boa ilustração desse arquipélago é a visão noturna por satélite mostrada na Figura 3. Nela fica clara (embora literalmente escura) a baixa densidade de consumo de grande parte do território nacional e a desigualdade de distribuição do consumo elétrico. Pode-se, inclusive, localizar praticamente todas as “ilhas” acima mencionadas.

Figura 3: Visão noturna mostrando as “ilhas” de iluminação existentes no Brasil e vizinhanças, podendo-se perceber a faixa iluminada ao longo do trópico de Capricórnio (São Paulo, Rio) e da costa nordestina http://tecnaula.blogspot.com/2011/02/mais-uma-da-serie-um-satelite.html.

Dentro desses grandes centros urbanos de consumo com grande concentração populacional, é possível a utilização apenas complementar da fonte solar (dependendo da insolação do local) considerando que, por sua baixa densidade de produção e intermitência, será sempre uma contribuição percentualmente muito pequena em relação à demanda total de eletricidade destes centros de consumo.

As grandes concentrações populacionais da Zona Franca de Manaus, Santarém e Belém do Pará, embora situadas na Região Amazônica, são servidas pelo sistema elétrico principal e consideradas como pertencentes ao “primeiro Brasil”.

O “segundo Brasil” é constituído pelas cidades médias e pequenas e áreas adjacentes. Este segundo Brasil, embora seja uma “colcha de retalhos” formada de áreas de “media densidade de consumo”, em seu total, consome muita eletricidade. Com menor dificuldade podem aumentar a produção e o consumo das energias alternativas eólicas e solar (dependendo sempre do mapa de ventos e da insolação) pois as redes elétricas existentes são bastante ramificadas e apresentam menor dificuldade de expansão.

O “terceiro Brasil” é composto de grandes áreas, com baixa ou muitíssimo baixa densidade de consumo de eletricidade, situadas nas regiões do sertão do Nordeste e Amazônia. Estas áreas exigem análise e tratamento específico para cada micro região.

As fontes primárias renováveis, eólica e solar, são de baixa densidade na sua “produção” e variam a quantidade de energia produzida durante as vinte quatro horas do dia e com a as condições climáticas, mas têm grande potencial de aplicação no “terceiro Brasil” embora necessitem utilizar o auxilio de estocagem da energia como garantia para assegurar o fornecimento contínuo da energia ao usuário. Quando baterias são utilizadas para estocagem de energia devemos esperar aumento no valor do investimento e também que o descarte das baterias apresente o potencial de grande impacto ambiental.

A região da Bacia Amazônica pode ser interpretada como a composição de áreas com diferentes características: a primeira delas é uma a área quase plana vizinha da calha principal do Rio Amazonas e também as áreas quase planas próximas onde correm o terço final dos rios afluentes. Nessas áreas planas é pouco praticável o aproveitamento hidrelétrico para suprimento de energia elétrica aos pequenos grupamentos humanos existentes. Cada um desses grupamentos humanos nesta área plana, muito sujeita a alagamentos, exige um tratamento específico. Em sua maioria são grupamentos humanos ribeirinhos, mas sem possibilidade econômica de aproveitamentos hidroelétricos locais.

As áreas não planas da Amazônia onde se encontram os dois terços iniciais do comprimento dos rios tributários contando a partir de suas nascentes, podem ser denominadas de regiões inclinadas/serranas: a primeira região inclinada/serrana está localizada a oeste e noroeste da calha principal plana do Rio Amazonas englobando as a áreas próximas as fronteiras da Bolívia, Peru e Colômbia; a segunda área inclinada/serrana é denominada Região Norte da Bacia Amazônica onde correm os rios próximos as divisas da Venezuela, Guiana, Suriname e Guiana Francesa e seus afluentes; a terceira região inclinada/serrana localizada ao sul é próxima ao planalto central brasileiro. As áreas montanhosas constituem a “borda da bacia amazônica”.

As três grandes áreas inclinadas/serranas juntas compreendem a maior percentagem da área da Amazônia Brasileira. Estas três grandes áreas (Figura 4)[4] apresentam grandes oportunidades de aproveitamentos hidroelétricos principalmente “a fio d’água“ que não provocam grandes alagamentos ou desmatamentos e podem com relativa facilidade suprir as necessidades de eletricidade dos pequenos assentamentos humanos existentes e atividades extrativistas.

Mapa Potencial Elétrico, mostrando as bacias, – Eletrobras (Eletrobras, 2017)

Mapa das Elevações do Brasil (topographic.mapa.com)

Figura 4: Mapas dos rios (ao alto), e de elevações (abaixo) assinalando regiões onde é mais viável o aproveitamento hidroelétrico na Amazônia.

Na região semiárida do “Terceiro Brasil” situada no Nordeste Brasileiro a utilização racional da energia solar e eólica pode muito contribuir muito para a melhora econômica da região. Ver Mapa da Figura 5 (CEPEL Eletrobras, 2001).

Figura 5: Atlas do Potencial Eólico Brasileiro  CEPEL/MME

Para os grupamentos humanos isolados, onde economicamente não for viável o “back-up” por redes elétricas do sistema elétrico será necessária a estocagem de energia em baterias ou a utilização de geradores diesel para garantia do suprimento de energia elétrica.

Os grupamentos humanos do “Terceiro Brasil” onde ocasionalmente houver a interligação com as redes do Sistema Integrado Nacional poderão, além do uso das fontes renováveis, utilizar o regime de exportação/importação de energia através de redes inteligentes e utilizando indiretamente o estoque regulatório de água dos reservatórios das hidroelétricas, tornando praticamente desnecessária a estocagem local de energia em baterias para garantir a regularidade do fornecimento de energia elétrica.

Denomina-se “Sistema Integrado Nacional – SIN” o servido pelas grandes linhas de transmissão (Figura 6), as redes de distribuição e seus ramais que atendem ao “Primeiro Brasil”, ”ao Segundo Brasil” e aos centros de consumo por ventura interligados do “Terceiro Brasil”. O SIN tem nas hidroelétricas sua fonte principal de produção de energia. Nota-se na Figura 6 que grande parte do território brasileiro integra esse “Terceiro Brasil” onde o SIN não está presente.

O maior potencial hidrelétrico a ser explorado pelo Brasil se concentra nas áreas da Bacia do Amazonas que não apresentam grandes elevações nem são propícias a reservatórios de grande capacidade. Na concepção atual de desenvolvimento brasileiro, essas usinas se destinam à “exportação” para a região Sudeste-Centro-Oeste SE-CO como já acontece com as usinas instaladas do Rio Madeira e, em grande parte, com a própria energia de Itaipu. Essas usinas chegaram a ser consideradas, para fins de planejamento do SIN, como integrantes da região SE-CO.

Figura 6: Sistema Integrado Nacional – SIN Mapa das Linhas de Transmissão da ONS (ONS)

A introdução de usinas a fio d’água é um grande problema não suficientemente explicitado no nosso planejamento elétrico. No início de 2005, ele foi claramente exposto no artigo “Um Porto de Destino para o Sistema Elétrico Brasileiro” na revista E&E № 49. Na Figura 7, (retirada desse artigo), mostram-se as curvas de energia natural afluente – ENA para as diversas regiões do Brasil que compõem o SIN.  A solução desse problema não é trivial. A regulação sazonal não poderá ser feita com os reservatórios já existentes e o custo da nova energia, com cinco meses do ano com cerca de 10% da capacidade máxima, deverá obrigatoriamente incluir o da energia complementar para o período seco. Esta já é, aliás, a realidade que enfrenta o consumidor que já está pagando um preço diferenciado para cobrir o custo das usinas térmicas que atualmente utilizam óleo ou gás combustível.

Energia Natural Afluente nas Regiões do SIN

Figura 7: A energia natural afluente é governada pela vazão dos rios, na medida que se amplie a participação da Região Norte, com usinas sem reservatórios, a geração elétrica passará a ter forte sazonalidade.  

Soma-se, agora, a oscilação ao longo do dia da energia eólica (atualmente) e futuramente da solar, defasadas da curva diária de consumo. Isso exige das hidroelétricas um excesso de capacidade instalada que encarece seus custos e obriga o uso do estoque regulador.

É primordial a conscientização sobre a importância de considerar a água existente nos reservatórios como estoque regulador de energia. Isso nos conduzirá a utilizar o SIN priorizando a utilização da energia proveniente da região norte nos meses que houver grande caudal e, na medida do possível, estocar água nas hidrelétricas das outras regiões que tenham  capacidade de estocar.

O caudal (vazão) dos rios que alimentam as hidrelétricas (volume de água por segundo) varia ao longo das estações do ano e também com as variações plurianuais dos ciclos hidrológicos. O funcionamento das termoelétricas que consomem biomassa também está sujeito a variações anuais e plurianuais. Torna-se, portanto evidente o conceito de adotar um “estoque regulador de energia” para compensar os períodos em que a energia disponibilizada pelo baixo caudal dos rios e a biomassa disponível seja insuficiente para atender a demanda. O “estoque regulador de energia” é a soma dos estoques de água existentes nos reservatórios das hidroelétricas.

Não existe melhor estoque regulador de energia do que a água nos reservatórios das hidroelétricas. Tal estoque regulador de energia permite atender com simplicidade e presteza as variações na demanda de eletricidade[5].

É desejável também a adoção da estratégia de priorizar no despacho as usinas hidrelétricas à fio d’água e com pequena capacidade de estocar água objetivando sempre maximizar o “estoque regulador de energia” depositado em água nos reservatórios.

As usinas nucleares, se existirem em quantidade suficiente, permitirão ao operador nacional do sistema elétrico gerenciar o sistema de forma que haja sempre o “estoque mínimo necessário regulador de energia” que permita atender as flutuações na demanda de eletricidade mantendo razoável o custo da produção da eletricidade e o baixo impacto ambiental, mesmo nos períodos de baixa pluviosidade. Sabe-se, no entanto, por simulações, que o “cobertor” do estoque nos reservatórios existentes e os possíveis de construir será curto e as térmicas convencionais (óleo, gás natural ou biomassa) deverão ser acionadas para absorver o déficit sazonal ou déficits de chuva plurianuais.  

Parece obvio que a modelagem do sistema elétrico brasileiro para produção, transporte e distribuição de energia e sua comercialização deve ser decidida com base nas peculiaridades brasileiras e não na utilização, sem a devida adaptação de conceitos “importados” do Reino Unido.  A ideologia de liberalização vem, historicamente, experimentando altos e baixos na economia brasileira. Mesmo respeitando a ideologia liberal (atualmente em alta), é necessário o entendimento do sistema brasileiro e não simplesmente arremedar as práticas comerciais de outro país.

Na composição atual do Operador Nacional do Sistema Elétrico participam representantes das empresas geradoras; o ONS pode, portanto, sofrer grande influência dessas empresas em detrimento do melhor interesse dos consumidores. Seria melhor que fosse um órgão de governo composto de funcionários de carreira trabalhando em sistema aberto tipo bolsa de valores com painéis que demonstrassem suas decisões em plenário onde os representantes das empresas pudessem estar presentes, o que agregaria maior transparência ao sistema.

Os leilões da ANEEL – Agencia Nacional de Energia Elétrica, deveriam ser realizados entre os produtores de energia da mesma fonte energética de produção e não uma competição geral entre fontes diferentes como no sistema atual, de inspiração importada. Para cada fonte primária de produção de energia seriam alocadas cotas de fornecimento de energia que comporiam o “mix”, estrategicamente planejado, para garantir o suprimento de eletricidade ao menor preço médio possível e minimizando o impacto ambiental.

Uma “frase de impacto” de um influente assessor governamental à época da implantação do sistema administrativo gerencial econômico do setor elétrico nacional, que havia participado da elaboração do Programa Computacional New Wave para auxilio nas decisões para operação do sistema elétrico, resume, deste modo, a lógica de prioridade no “despacho” das usinas (fontes) produtoras de eletricidade: “não interessa se trata – se de combustível de cocô de galinha ou fusão nuclear o que interessa é o preço da energia”. Esta frase revela a mentalidade financeira e visão curta de quem entende muito pouco de planejamento energético particularmente em se tratando de um sistema elétrico com as características do Sistema Integrado Nacional. Ela sintetiza a miopia de um gerenciamento focando exclusivamente o aspecto contábil em curto prazo e não o comportamento anual e plurianual do sistema objetivando a segurança do fornecimento e o menor preço médio da energia.

No Brasil, a produção de energia para o atendimento continuo da “base de carga” pode ser entendida como sendo a energia produzida pelas hidroelétricas, usando a média anual do caudal mínimo dos rios que as alimentam, adicionando também a média mínima da energia produzida pelas fontes eólica e solar acrescida pela energia produzida pelas usinas termo- elétricas de menor preço (nucleares e a carvão) operando em produção anual continua . Os picos diários de demanda, ou seja, o “segmento de carga” deve ser prioritariamente atendido com o estoque regulador de energia constituído pela água dos reservatórios. As hidroelétricas têm a capacidade de “seguir a carga” com mais facilidade e economicidade do que as usinas térmicas.

As usinas termoelétricas a gás e óleo são construídas com menor valor de investimento, mas funcionam com o combustível de maior preço resultando em alto preço na energia elétrica produzida. Não é aconselhável que essas usinas operem continuamente ao longo do ano. Quando não estão produzindo energia são remuneradas pelo retorno do investimento acrescido do custo operacional nesta condição e lucro. Quando solicitadas a operar pelo Operador Nacional do Sistema recebem o adicional pela energia efetivamente produzida. É assim, mas isto é vantajoso para quem?

Para funcionar produzindo grandes “blocos de energia” em regime continuo na “base de carga” as usinas térmicas que produzem energia a menor preço por Megawatt-hora são as usinas nucleares e as usinas convencionais que usam carvão como combustível.

O Brasil é prodigo em reservas de urânio e detém a tecnologia de todas as etapas do ciclo combustível nuclear desde a mineração e produção do Yellow Cake até a finalização do elemento combustível para ser usado nos reatores, passando assim por todas as etapas do ciclo do combustível nuclear. Nosso País consta da pequena lista de países que dominam a tecnologia de enriquecimento de urânio e dispõe de grandes reservas de urânio. Somente os Estados Unidos, Rússia e Brasil fazem parte desta pequena lista. Todos os demais países ou dispõem da tecnologia do ciclo do combustível nuclear ou são detentoras de reservas de urânio ou nenhuma das duas condições e pagam por isso quando é compensador.

Países sem grandes fontes de combustível como o Japão e a França dificilmente poderão prescindir da utilização da energia nuclear que pode proporcionar estoque plurianual de combustível a preços competitivos e pequeno volume de armazenamento.

Quando for feita a reformulação correta e competente do sistema elétrico brasileiro ficará evidente a necessidade utilização continua em base de carga das usinas núcleo-elétricas ficando para uso apenas ocasional (quando houver necessidade) as usinas termo elétricas convencionais a óleo e gás para completar a produção de energia em poucos meses do ano. Em virtude do grande investimento necessário, o ritmo de construção das usinas nucleares deve ser compatibilizado com as necessidades de fornecimento de energia em base de carga que assegure a existência do estoque regulador de energia adequado.

O completo entendimento do conceito de utilizar o volume de água nos reservatórios das hidrelétricas no sistema elétrico como “estoque regulador de energia” permitirá minimizar o preço médio da energia elétrica, o impacto ambiental e maximizar o uso das fontes energia renováveis menos poluentes.

8.    O Futuro da Energia Nuclear no Brasil

Deve-se ter em vista que o consumo de eletricidade continuará crescendo e que a situação atual é uma única exceção (em 50 anos) em que repetimos em 2018 o consumo de 2014. O estoque máximo de água nos reservatórios se manteve constante desde o inicio na década de 1990. A melhor forma de garantir o estoque regulador de água é considerar como energia de “Base de Carga Hidroelétrica” o caudal mínimo anual dos rios e usar usinas nucleares que são as termoelétricas de menor preço da energia (comparando-se com as demais termoelétricas) para compor a “base de carga de energia elétrica”. As grandes reservas nacionais de urânio estimulam a adoção desta opção.

A Eletronuclear desenvolveu em parceria com a COPPE, Coordenadoria de Pós-Graduação em Engenharia da Universidade Federal do Rio de Janeiro com a ótica da “segunda era nuclear” um importante estudo de localização para construção de centrais nucleares no Brasil. As conclusões desse estudo foram divulgadas sob a forma de palestras pela Empresa. Tal estudo iniciou-se pela seleção dos locais para construção que atendem a uma extensa lista de requisitos (mais de dois mil) priorizando a segurança nuclear. Foram selecionadas quarenta opções de localização que atendem a todos os requisitos.

Cada central núcleoelétrica planejada neste estudo, ao final de sua construção, teria capacidade para comportar seis usinas nucleares tipo PWR com cerca de 1200 Megawatts que seriam construídas sequencial e paulatinamente. É recomendável que o inicio da construção de cada usina da mesma central seria defasado de cerca de um ano e meio do inicio da construção da usina anterior para otimizar a utilização da mão de obra e minimizar o preço total da construção de cada central.

Considera-se aqui que a decisão sobre a possível implantação dessas centrais seria tomada no planejamento energético global, mas os possíveis locais já estariam determinados.

Naquele estudo, foi feita a opção por usinas dotadas reatores PWR modernos com sistema de segurança passiva aprimorada que não necessitam de energia externa para remoção do calor residual produzido pelos núcleos dos reatores após o desligamento com a interrupção da reação nuclear em cadeia.

O conceito de segurança passiva aprimorada prevê que o calor residual de um reator nuclear depois do desligamento súbito, que no primeiro momento, se constitui em cerca de 2,3% da energia que o reator vinha produzindo antes da interrupção da reação nuclear em cadeia e decresce rapidamente ao longo de quarenta e oito horas para valores mínimos seja absorvido sem a necessidade de existir um sistema independente de remoção de calor que utilize energia elétrica como ocorre na maior parte das usinas nucleares atualmente existentes.

 Os modernos reatores PWR são projetados para que a dissipação desta energia residual produzida pelo núcleo do reator seja realizada por circulação natural por convecção da água no circuito primário da usina tornando-se desnecessária a utilização de energia elétrica de fonte não nuclear externa para assegurar a remoção do calor residual.

Ao término da construção, cada Central Nuclear composta de seis usinas teria a potência total instalada de sete mil e duzentos megawatts e podendo operar com o fator de capacidade de 0,9. Cada uma dessas centrais nucleares, quando dotadas das seis usinas, produziria mais energia do que a soma das energias produzidas pelas hidrelétricas da empresa Furnas ou da empresa CHESF- Centrais Hidrelétricas do São Francisco ou a metade da energia anual gerada pela usina de Itaipu.

A retomada do crescimento econômico brasileiro implicará necessariamente em aumento do consumo de eletricidade e tornará ainda mais evidente a necessidade de aumentar utilização de termoelétricas nucleares na ”base de carga” produzindo “grandes blocos de energia”. Caso seja mantida a atual intensa utilização de usinas termoelétricas convencionais a óleo e gás o alto preço da eletricidade atualmente praticado tenderá a aumentar.

Qualquer nova usina nuclear, prevista para ser construída, deverá ser planejada com a ótica da “segunda era nuclear” que prioriza a segurança e entende a energia nuclear não como sendo “a solução” para produção de eletricidade e sim com uma fonte complementar primária de produção de energia com segurança que não pode deixar de participar de um “mix” de fontes produtoras para assegurar a garantia no fornecimento de eletricidade com economicidade e minimizando os impactos ambientais.

O planejamento da geração nuclear tem que ser parte do programa de longo prazo de geração de energia para o Brasil. A periodicidade atual (planos decenais) é inadequada para isso. Em termos de planejamento energético nacional, dez anos constituem um prazo curto. O ciclo de planejamento e construção de uma instalação de grande porte produtora de energia e linha de transmissão associada é da ordem de dez anos de acordo a pratica internacional e frequentemente um empreendimento de porte escapa ao ciclo de dez anos. O lançamento do plano de longo prazo vem sendo sucessivamente adiado pelo Governo Federal.

Para o importante setor nuclear torna-se necessário:

  1. Terminar a construção da Usina Nuclear Angra 3 da Central Nuclear Álvaro Alberto em Angra do Reis.
  2. Decidir o local da construção de uma ou até mesmo duas centrais nucleares, com a possível brevidade, selecionando sua localização entre as quarenta localizações recomendadas nos estudos realizados pela COPPE e a Eletronuclear que sejam mais convenientes para atender as necessidades do Sistema Integrado Nacional. Com isto, não se perderia o conhecimento acumulado na área por técnicos altamente especializados.
  3. Decidir, a programação da construção das usinas dentro de um planejamento global, idealmente, com o início da construção da primeira central até 2022. É possível custear, ao menos parcialmente, a construção das usinas nucleares com a “venda futura de energia” garantida por acordos de governo, porém mantendo a propriedade e responsabilidade da estatal brasileira pela propriedade, operação e descomissionamento das usinas nucleares[6].
  4. Construir a instalação de armazenamento intermediaria de rejeitos da Central Nuclear Álvaro Alberto e o módulo de demonstração experimental da Instalação para estocagem, em longo prazo, de combustível nuclear queimado. Este novo conceito de estocagem concebido na Eletronuclear permite estocar por mais de quinhentos anos todo o combustível nuclear utilizado em todas as centrais nucleares brasileiras com total segurança e baixo preço, usando a remoção do calor residual por circulação natural e permitindo monitoramento seguro, simples, constante e de baixo custo. Esta solução é tecnologicamente muito mais avançada do que o antigo conceito de deposição dos rejeitos nucleares em grandes profundidades em locais teoricamente considerados estáveis que foi preconizado durante a “primeira era nuclear” e que na realidade significa “colocar o lixo debaixo do tapete”, embora essa concepção ainda conte com grande número de adeptos.
  5. Aprimorar a operação e ampliar as instalações da INB – Indústrias Nucleares do Brasil de forma que em um prazo máximo de dez anos sejam atendidas as necessidades de combustível nuclear para alimentar as usinas nucleares que estiverem em funcionamento no País.
  6. Ampliar a responsabilidade da INB para ser encarregada do transporte e armazenamento do combustível nuclear queimado dos reatores e posteriormente, quando for economicamente recomendável para o Brasil, reprocessar o combustível nuclear queimado[7], e manter a estocagem monitorada dos rejeitos usando o provavelmente as mesmas instalações construídas em região adequada para o armazenamento intermediário, no longo prazo, do combustível nuclear queimado.
  7. A CNEN – Comissão Nacional de Energia Nuclear completará a construção do RMB – Reator de Multipropósito Brasileiro em Iperó, São Paulo, para atender as necessidades nacionais de radioisótopos, testes de materiais e combustíveis e experiências conjuntas com centros de pesquisa e universidades.
  8. Ampliar a prospecção de Urânio em território nacional.
  9. Incluir nas responsabilidades da INB a comercialização e gestão do estoque de urânio para atender as necessidades nacionais. A INB passaria a ter a atribuição de adquirir no Brasil a preços do mercado internacional em longo prazo o Yellow Cake que as mineradoras que operam no país decidirem produzir a partir do conteúdo de urânio nos minérios que exportam.
  10. Dar prosseguimento ao programa de submarinos com propulsão nuclear e, consequentemente, a todas as atividades em desenvolvimento em Aramar.

Bibliografia

AIEA. 2015. The Fukushima Daiichi Accident – Report by Director General . Viena : AIEA, 2015.

Alvin, Weinberg M. 1997. The First Nuclear Era: The Life and Times of a Technological Fixer Hardcover. s.l. : American Institute of Physics; 1994 edition , 1997. ISBN-13: 978-15639635.

Arms Control Association. 2018. Nuclear Weapons: Who Has What at a Glance. [Online] june de 2018. https://www.armscontrol.org/factsheets/Nuclearweaponswhohaswhat.

Atomic Archive. Timeline of the Nuclear Age. Nuclear Pathways. [Online] http://www.atomicarchive.com/Timeline/Time1930.shtml.

  1. 2018. BP Satistical Review of World Energy, 67th Edition. s.l. : BP, 2018.

Brawn, Paul. 2003. First nuclear power plant to close. The Guardian. [Online] Mar de 2003. https://www.theguardian.com/uk/2003/mar/21/nuclear.world.

CEPEL Eletrobras. 2001. Atlas do Potencial Eólico Brasileiro (2001). CRESESB. [Online] 2001. http://www.cresesb.cepel.br/index.php?section=publicacoes&task=livro&cid=1.

Craddock III, Jack. 2016. The Shippingport Atomic Power Station. [Online] 2016. http://large.stanford.edu/courses/2016/ph241/craddock1/.

Eletrobras. 2017. MapaSipot-Dezembro2017. [Online] dez de 2017. http://eletrobras.com/pt/AreasdeAtuacao/geracao/sipot/MapaSipot-Dezembro2017.pdf.

European Nuclear Society. Nuclear power plants, world-wide. euronuclear. [Online]

ONS. Mapa Dinâmico do SIN. Operador Nacional do Sistema Elétrico. [Online] http://www.ons.org.br/paginas/sobre-o-sin/mapas.

topographic.mapa.com. Brasil . topographei.mapa.com. [Online] http://pt-br.topographic-map.com/places/Brasil-3559915/.

  1. 1971. United Nations, General Assembly – Twenty-sixth Session. Restoration of the lawful rights of the Peoples’s Republic of China in United Nations. [Online] 25 de October de 1971. http://www.un.org/en/ga/search/view_doc.asp?symbol=A/RES/2758(XXVI).

[1] 1938 (Dezembro) Fermi recebe o prêmio Nobel pela descoberta de “elementos transurânicos”, na verdade fissão de urânio e parte para os EUA. (22 deDezembro ) Otto Hahn envia texto para Lise Meiner com resultados experimentais que são interpretados por Meiner e seu sobrinho Otto Frish como fissão nuclear.  
1939 (6 de janeiro) Hahn e seu assistente Fritz Strassmann publicam seus resultados; (11 de Fevereiro)  Meitner and Frisch publicam a interpretação teórica dos resultados de Hahn-Strassmann como fissão nuclear .

[2] União Soviética 1949, Reino Unido 1952, França 1960 e China em 1964.

[3] Cerca de 14.570 ogivas sendo que 13.400 em poder de Rússia e EUA, conforme avaliação da Arms Control Association https://www.armscontrol.org/factsheets/Nuclearweaponswhohaswhat

[4] Nota: Vale a pena acessar os mapas mostrados na Figura 3. Os mapas permitem o zoom para examinar detalhes. É possível, no segundo mapa, ler a altitude do famoso encontro das águas dos rios Negro e Solimões, perto de Manaus. Onde a altitude é de 7m em relação ao mar. Isto faz com que o aproveitamento hidroelétrico do Rio Amazonas propriamente dito, formado deste encontro das águas, seja praticamente inviável para centrais de porte.

[5] Em alguns países do mundo são usadas usinas reversíveis, sendo a água de um reservatório bombeada para reservatórios a montante para armazenar energia excedente de outras usinas. Isto exige um considerável investimento que mesmo assim pode ser viável. Im considerável investimento que o Brasil ainda consegue evitar, mas pode ser uma alternativa às baterias para “armazenar vento” ou energia fotovoltaica.

[6] Na Bélgica, em uma mesma central existem usinas de diferentes proprietários o que nos sugere diferentes financiadores compradores de blocos de energia futura a ser produzida em uma mesma central nuclear brasileira. O financiamento da construção de usinas nucleares com o pagamento com a energia a ser produzida implicará na adoção de legislação que garanta a compra, o preço futuro da energia, sua correção inflacionaria e garantia cambial.

[7] Essa posição coincide com a adotada pela Política Nuclear Brasileira (Decreto Nº 9600 de 05/12/2018) e tem o significado de que o Brasil considera a energia contida no combustível utilizado aproveitável no futuro e baliza a definição do tipo de armazenamento a ser adotado que é muito importante na fase atual.

A Concretização da Política Nuclear Brasileira

A Política Nuclear começou a ser implantada antes de sua publicação

Carlos Feu Alvim e Olga Mafra
carlos.feu@ecen.com e olga@ecen.com

O Decreto Nº 9600 de 05/12/2018 sobre a Política Nuclear reúne princípios profundamente amadurecidos dentro do setor correspondente.  Em nosso recente artigo na E&E 101, comentamos alguns dos aspectos do texto que institucionaliza essa Política.

Faltou comentar o que já foi realizado para implantar essa Política, até antes mesmo que ela fosse consubstanciada no mencionado Decreto. É o que estamos abordando aqui.

Foi reativado o Comitê de Desenvolvimento do Programa Nuclear Brasileiro – CDPNB[1] que centraliza na Presidência da República as decisões fundamentais da Política Nuclear. O deslocamento de sua secretaria executiva para o Gabinete de Segurança Institucional – GSI[2] da Presidência da República marcou o reconhecimento do caráter estratégico para o Brasil da energia nuclear e dos conhecimentos tecnológicos a ela associados. A decisão brasileira é análoga à posição de todos os grandes países do mundo onde existe, invariavelmente, uma centralização das decisões sobre a política nuclear no posto máximo do Poder Executivo.

O processo de elaboração da Política Nuclear permitiu criar junto ao GSI vários Grupos Técnicos com foco em temas relevantes que antecipavam os passos seguintes para sua concretização. Esses GTs contaram com a participação e coordenação direta dos setores envolvidos. Deles resultaram, por exemplo, a prioridade dada ao projeto do Reator Multipropósito Brasileiro – RMB, liderado pela CNEN através do IPEN, e a viabilização de recursos da saúde para sua concretização. Também é um ponto positivo a participação da indústria argentina no projeto, como também foi o fornecimento de urânio enriquecido brasileiro para a Argentina. Ademais, ações de efetiva cooperação como estas reafirmam a política de uso somente pacífico da energia nuclear em nosso continente. Além disso, o projeto do RMB reúne, em sua execução, as capacidades técnicas brasileiras tanto na parte civil como na militar e isto é também fator relevante dentro da Política[3].

O RMB, além da produzir radioisótopos para aplicações na saúde, agricultura e indústria e fornecer feixes de nêutrons para a investigação e aplicações, permitirá a irradiação e teste de combustíveis nucleares e materiais usados nos reatores visando avaliar a integridade estrutural destes quando submetidos a altas doses de radiação, o que não existe no país. Juntamente com os projetos da Marinha já existentes, a futura presença do RMB abre a perspectiva de reunir, no campus de ARAMAR, unidades de pesquisa e formação de pessoal que venham a reforçar o entrosamento com os institutos de pesquisa da CNEN e os cursos universitários nas áreas nuclear e correlatas.

Sem muito alarde, foi desfeita uma falha na organização nuclear vigente que era a esdrúxula subordinação ao órgão regulador CNEN das empresas INB e NUCLEP. Principalmente no caso da INB, que tem a missão de se ocupar de todas as etapas da mineração até o combustível nuclear, o fato do Presidente da CNEN ser o presidente do Conselho da Empresa gerava um evidente conflito de interesses. Este conflito, que poderia significar uma conivência do órgão regulador, parece ter favorecido, ao contrário, um aparente “excesso de zelo” que acabou inviabilizando o volumoso investimento já realizado na mineração subterrânea em Lagoa Real/Caitité. A dificuldade de licenciamento motivou seu abandono. Isto paralisou a produção de nossa única mina de urânio por mais de três anos, obrigando o País, com cerca de 5% da reserva mundial, a importar a matéria prima para suas centrais[4]. Ao final de 2018 a INB anunciou os testes operacionais para extração de urânio em anomalia próxima à atual usina, com ampliação da capacidade de beneficiamento.

O Governo que se encerrou (Temer) desvinculou a CNEN da presidência dos conselhos das empresas INB e NUCLEP. A nova estrutura, anunciada neste início de ano e de governo (Bolsonaro), resolveu o problema de forma definitiva realocando essas duas indústrias no Ministério de Minas e Energia. Isto também soluciona o desequilíbrio administrativo de se ter em um ministério de parcos recursos (MCTIC) duas indústrias de porte que absorviam boa parte de sua dotação orçamentária. No caso da INB, existe ainda uma potencial sinergia com a Eletronuclear que a realocação ministerial pode facilitar.

Em todas estas iniciativas, cabe completar a referência que fizemos em artigo anterior a membros da equipe do GSI na concretização da Política, e destacar a atuação discreta e decidida do Ministro Sérgio Etchegoyen que esteve no centro de todas estas modificações e contribuiu com seu prestígio para a aprovação unânime da Política Nuclear no CDPNB.

Paralelamente a reestruturação do Setor Nuclear que se desenhava em coerência com o reconhecimento de seu caráter estratégico, surgiu o problema criado com a paralisação das obras de Angra 3 que, a nosso ver, se deveu justamente ao não reconhecimento, na decisão de interromper sua construção, de seu caráter estratégico.

Centenas de milhões de dólares foram perdidos nesse atraso que, fundamentalmente, se deveu a aplicação, a nosso ver incorreta, da regra contábil do impairment que tornou a Eletronuclear insolvente e incapaz de utilizar empréstimos já negociados, contribuindo para arrastar a controladora Eletrobras para uma situação de insolvência prática que só foi evitada por seu caráter estatal. Uma simples decisão de rever a tarifa futura, que sempre esteve na mão do próprio Governo Federal, provocou esse prejuízo que deve chegar, em reais, a uma cifra bilionária.

Todos os movimentos já realizados levam a crer que a construção de Angra 3 pode agora ser feita com recursos de subsidiárias da própria Eletrobras ou externos, simplesmente porque foi tomada uma resolução sobre a tarifa futura. A possível participação de recursos externos segue possível e provável, sem que se coloque em risco o controle nacional da geração nuclear. A atual direção da Eletronuclear exerceu e está exercendo papel crucial no equacionamento do problema. A manutenção dos dirigentes e o anunciado apoio do Ministro do MME e da própria Presidência à conclusão de Angra 3 são sinais positivos, mas não resolveram em definitivo o problema de recursos financeiros necessários.

Também como consequência implícita do desenho da Política Nuclear, surgiu a perspectiva de parcerias com a iniciativa privada na exploração mineral. Na legislação atual existe o monopólio da exploração dos minerais nucleares. Um minerador que encontre urânio associado no minério que explora não tem nenhum interesse em revelar o achado e até o esconde das autoridades. Se a quantidade for pequena ele será obrigado a entregar à CNEN a quantidade correspondente em produto acabado sem receber nenhum pagamento. Se a presença do minério nuclear for importante, ele pode ser impedido de continuar a mineração.

A saída desse impasse já vem sendo procurada pela própria INB que detém o monopólio na mineração nuclear no caso concreto de fosfato associado ao urânio em Santa Quitéria, no Ceará. A solução aventada seria um consórcio com empresa privada. O Grupo GT-3 do CDPNB vem tratando do tema. Existe uma série de situações intermediárias onde a venda do urânio secundário extraído à INB poderia ser lucrativa tanto para o minerador como para a estatal. A solução deste impasse não precisa, em princípio, passar pela revogação do monopólio, mas provavelmente necessite de alteração na legislação. Uma das soluções seria substituir a obrigação de entrega gratuita à CNEN e oferecer a possibilidade da compra do concentrado de urânio pela INB.

No caso do tório, cujo mercado interno e externo é limitado, a solução é mais complexa. Por exemplo, na obtenção de terras raras de areias monazíticas no Brasil, o concentrado de hidróxido tório gerado (torta II) continua como um problema de resíduo radioativo ainda não solucionado. Embora não seja considerado um rejeito, atualmente é fonte de despesas para a INB juntamente com o rejeito propriamente dito.

Deve-se lembrar, enfim, que existem tecnologias na área do ciclo de combustível nuclear que se configuram como estratégicas e estão sujeitas a controles e barreiras na área internacional. Isto não inclui a fase de extração e beneficiamento de minérios. Apenas a partir da comercialização do produto purificado é que existe um componente estratégico importante. Já discutimos esse assunto anteriormente e também assinalamos que o mesmo critério pode ser aplicado aos radioisótopos nucleares onde somente a separação primária dos produtos de fissão deve ser considerada estratégica e não poderia ser entregue à iniciativa privada. Esses assuntos também têm sido objeto de discussão dos GTs do GSI/PR.

Um longo caminho no estabelecimento e concretização das estratégias adequadas à implantação da Política Nuclear deve ainda ser percorrido. Várias das diretivas deveriam ser objeto de estudos e detalhadas sob a forma de estratégias que seriam parte de um Programa Nuclear  Brasileiro que deve ser explicitado.

O Próprio CDPNB precisa preencher a lacuna existente na medida em que o Programa Nuclear Brasileiro (PNB) cujo Desenvolvimento (D) deve cuidar, não existe formalmente.

A visualização da continuidade de esforços, ao longo de vários governos de diferentes tendências, permite encarar de maneira positiva a perspectiva que ela se firme como Política de Estado e atinja seus objetivos.

[1] O CDPNB foi criado por meio de Decreto datado de 2 de julho de 2008 e foi alterado pelo Decreto de 22 de junho de 2017. O CDPNB este inativo durante o Governo Dilma, em 2017 foi reativado e sua Secretaria Executiva passou da Casa Civil para o GSI.

[2] Algumas siglas usadas neste artigo: CDPNB – Comitê de Desenvolvimento do Programa Nuclear Brasileiro, CNEN – Comissão Nacional de Energia Nuclear, CTMSP – Centro Tecnológico da Marinha em São Paulo, GSI/PR – Gabinete de Segurança Institucional da Presidência da República, INB – Indústrias Nucleares Brasileiras e NUCLEP Nuclebras Equipamentos Pesados, agora vinculadas ao MME – Ministério das Minas e Energia, MCTIC – Ministério da Ciência, Tecnologia, Inovação e Comunicações.

[3] Não é exatamente coincidência que o Alte. Noriaki Wada, que coordenou as atividades na área nuclear no GSI, tenha sido  indicado para comandar o Centro tecnológico da Marinha em São Paulo – CTMSP.

[4] Esta situação será resolvida brevemente com a exploração de outra ocorrência próxima a atual usina.

Comentário Recebido:

Recebemos do Alte. Othon Pinheiro da Silva, que dispensa apresentações,  mensagem que, a nosso ver, encerra uma ideia que ainda é válida:

“Na década de 1980, era funcionário do IPEN o Dr. Alcídio Abrahão um dos engenheiros químicos mais competentes da história nuclear brasileira. Sugeri insistentemente à direção da CNEN e do IPEN que construíssemos, sob a liderança do Dr. Alcídio Abrahão, um laboratório de desenvolvimento de técnicas de ” abertura do minério ” para economicamente aproveitar o conteúdo de urânio das ocorrências minerais.

Estas técnicas de abertura seriam disponibilizadas às mineradoras e seria garantida a compra pela INB do urânio a preços do mercado internacional de longo prazo. A INB manteria o estoque para suprimento de nossas usinas nucleares e venderia ao mercado internacional o excedente comunicando as vendas a AIEA ( a ABACC ainda não existia) .

Na ocasião, a ideia não foi rechaçada nem aprovada. Se tivesse sido adotada, ela poderia evitar o constrangimento do Brasil comprar urânio externamente que é quase igual ao que seria o Brasil comprar minério de ferro. A abertura correta do minério minimiza rejeitos e procura a economicidade.”

A nosso ver, essa ideia pode ainda ser aproveitada hoje. Infelizmente. não temos mais o Dr. Alcídio Abraão cuja contribuição foi importantíssima para o desenvolvimento do ciclo nuclear no Brasil, mas ainda temos o IPEN e, vale lembrar, que também o CDTN, em Belo Horizonte, tem experiência com diversos minérios e uma instalação para testar metodologias de abertura, além disso, temos agora a experiência acumulada pela própria INB.

O ponto central da ideia seria facilitar a participação da iniciativa privada na produção de minérios onde o urânio é um produto secundário, dando assistência técnica e adquirindo o produto ao preço internacional médio. Separá-lo geraria um bônus ao minerador ao invés do atual ônus de ter que entregar o produto acabado à CNEN. Dispor de fontes variadas de urânio no país aumenta a segurança no abastecimento.

Política Nuclear do Brasil


Economia e Energia – E&E   Nº 101,  outubro a dezembro de 2018
ISSN 1518-2932

Opinião:

UMA POLÍTICA NUCLEAR DE ESTADO
PARA O BRASIL

Carlos Feu Alvim e Olga Mafra

Carlos.feu@ecen.com e olga@ecen.com

Por intermédio de Decreto Presidencial foi oficializada a Política Nuclear Brasileira – PNB, colocando em vigor o texto aprovado pelo Comitê de Desenvolvimento do Programa Nuclear Brasileiro – CDPNB que reúne os principais ministérios da área sob a Coordenação do GSI cujo Ministro-Chefe, General Etchegoyen, assinou o decreto juntamente com o Presidente Temer. Publicado no Diário Oficial de 06/12/2018 como Decreto Nº 9.600, de 05 de dezembro de 2018.

O mecanismo de consenso adotado e o longo processo de elaboração e reflexão iniciado ainda no governo anterior dão ao documento características de Política de Estado. A boa acolhida que ela vem merecendo do Setor Nuclear e a convergência com as diretrizes anunciadas por ministros do novo governo estão completando essa caracterização da política como de Estado.

A Política respondeu de maneira bastante satisfatória a expectativa reiteradamente manifestada nesta Revista sobre sua necessidade. O tom genérico adotado pode não satisfazer as necessidades imediatas, uma vez que se trata das diretrizes que deverão futuramente ser detalhadas, mas reúne, como deve, pontos quase consensuais, com conteúdo abrangente e importantes no estabelecimento das orientações a serem seguidas.

A PNB reafirma o uso pacífico e seguro da energia nuclear e o respeito aos compromissos internacionais nesse sentido. Assinala a importância do domínio do ciclo de combustível e da tecnologia nuclear para o desenvolvimento nacional e para o bem-estar da sociedade. As diretrizes são coerentes com os objetivos mencionados.

As deliberações práticas se concentram, como se espera, na valorização da tecnologia nuclear nas várias áreas em que essa é empregada. Um ponto importante é a definição do propósito de uso da núcleoeletricidade como energia limpa e firme. Fixa, por outro lado, que a responsabilidade de definir a demanda de eletricidade é da Política Energética, cabendo à área Nuclear cuidar da forma de suprir esta demanda.

Fica muito clara a necessidade de capacidade de produção de combustíveis nucleares para atender a demanda interna (o que ainda não vem ocorrendo nem na fase de mineração) e até de atender a uma demanda externa, respeitados critérios de eficiência econômica e preservada as reservas estratégicas cujo montante fica a definir.

A esperada abertura à participação privada na mineração e na produção de radioisótopos não foi institucionalizada, talvez por existirem dúvidas sobre sua factibilidade dentro do quadro constitucional atual. Por outro lado, nada foi feito para reafirmar o monopólio na área e impedir a participação da indústria privada. Também ficou claro na PNB que o limite para as exportações constitui a manutenção de reservas estratégicas o que tornaria permitida a exportação de excedentes.

A agregação de valor no ciclo de combustível é priorizada, a produção deve ser aumentada e atingir o volume necessário para atender as necessidades internas (o que não ocorre atualmente). Esse é um princípio básico a ser perseguido.

A segurança da energia nuclear é enfatizada nos dois sentidos da palavra em português, seja no sentido de lidar com a prevenção e solução de incidentes e acidentes nucleares e radiológicos, como no sentido de oferecer proteção física às instalações nucleares e prevenir tentativas de ataque a elas. Também as salvaguardas, visando a não proliferação nuclear e em favor do desarmamento mundial, são enfatizadas.

A preocupação com a formação e a manutenção no território nacional da capacidade intelectual necessária ao País é explícita e visa conter uma situação preocupante que não é exclusividade da área nuclear.

A conquista e manutenção da tecnologia nuclear em todas as fases do ciclo são reiteradas ao longo de todo o documento. Uma definição importante é a de que será buscado o reaproveitamento do combustível nuclear. Esta é uma decisão da mais alta relevância dentro do ciclo de combustível, que passa a incluir, no longo prazo, o reprocessamento.

Por outro lado, fica claro que a política de armazenamento de combustível será focada em um depósito de longo prazo, mas não definitivo, de maneira a permitir seu reaproveitamento.

Como se vê, embora ainda genérica, em muitos pontos a Política Nuclear Brasileira abre horizontes promissores para o uso racional da energia nuclear no Brasil, definindo completamente seu caráter estratégico.

Nota: A elaboração da PNB deve muito ao empenho do Alte. Wada Noriaki e do Comte. Gleiber Banus. Este último, que coordenou o grupo da SAE/PR no governo anterior foi chamado pelo primeiro ao GSI /PR visando dar continuidade ao esforço realizado anteriormente do qual tivemos a satisfação de participar. Também foram recolhidos subsídios de outros estudos anteriores relativos à política nuclear.

————————————-

Conteúdo E&E 101:

O Território Econômico Brasileiro é nosso?  |  Efeito Estufa:  Uma moratória para o metanoUma Política Nuclear de Estado para o BrasilO Território Econômico Nacional: Impactos das normas internacionais de contabilidadeToda E&E 101

————————————-

Cuidadosos Passos Rumo à Casa da Paz


Economia e Energia – E&E    Nº 99,  abril a junho 2018
ISSN 1518-2932

Palavra do Editor:

CUIDADOSOS PASSOS RUMO À CASA DA PAZ

A reunião dos líderes das duas Coreias, em 27/04/2018, abriu a perspectiva para que a Guerra da Coreia seja encerrada e as Coreias unificadas. Isto ocorre, após 65 anos de armistício de uma guerra ainda não oficialmente encerrada. Quanto à unificação, ela é identificada pelos líderes da Coreia do Norte e do Sul como “aspiração maior do povo coreano” e objetivo final da Declaração de Panmunjom.

Para Moon Jae-in a unificação faz parte de sua plataforma eleitoral que conquistou o apoio da população e o levou à Presidência da Coreia do Sul; para o líder norte-coreano Kim Jong-un é talvez o caminho da sobrevivência, rompendo seu isolamento.

O texto da Declaração de Panmunjom que objetiva a unificação das Coreias foi quase ignorado na imprensa ocidental que se ateve, quase exclusivamente, a um subitem do que se refere a desnuclearização no tópico 3 que se refere à paz. Ela inclui toda a Península e não é uma renúncia unilateral da Coreia do Norte às armas nucleares; significa também livrá-la da ameaça das bombas nucleares americanas, incluindo as implícitas nas manobras Coreia do Sul/EUA.

A Declaração reafirma boas intenções em alcançar a paz na Península Coreana e sua reunificação (termo não usado pelos coreanos). Nisso não diverge de manifestações anteriores. O que a diferencia de outras declarações genéricas é que foi feita pelas mais altas autoridades e as circunstâncias decorrentes da posse de armamentos nucleares pela Coreia do Norte que tornou o assunto mais urgente para a comunidade internacional.

Na versão integral da Declaração, que pode ser vista no Anexo 1 do artigo sobre a desnuclearização das Coreias, chama a atenção o pragmático plano aprovado em direção à reunificação. O texto resulta de um longo processo de negociação anterior que reflete um surpreendente entendimento sobre os passos a seguir. Ela contrasta com o caráter vago da declaração Trump x Kim Jong-un, onde apenas são delineados alguns princípios gerais a serem considerados nas ações futuras.

A Declaração dos dois líderes coreanos parte do princípio que a situação presente é uma “velha herança da Guerra Fria”. As Coreias “abordam corajosamente uma nova era de reconciliação nacional, paz e prosperidade e de cultivo de relações intercoreanas”. São detalhadas medidas em 3 tópicos principais:

  1. Unificação liderada pelos coreanos facilitando um avanço abrangente e inovador nas relações entre as Coreias,
  2. Esforços conjuntos para aliviar a tensão militar e eliminar o perigo de guerra na Península,
  3. Estabelecimento de um regime de paz na Península, identificada como missão histórica que não deve mais ser adiada, acabando com o estado “antinatural de armistício”.

Sobre cada um destes tópicos são detalhadas medidas práticas. No primeiro tópico, é dado um grande destaque a liderança dos coreanos no processo de reunificação, As Coreias atuarão para implementar acordos já existentes, promover ações e reuniões, inclusive outras de alto nível. Foi criado um grupo permanente, localizado do lado norte da fronteira, na cidade de Gaeseong que já foi sede do governo imperial da Coreia.

Os esforços conjuntos para concretizar o tópico 2 passam por reduzir ações hostis, evitando ações militares provocativas que vinham ocorrendo e também ações de propaganda que o Sul vinha fazendo com a distribuição de folhetos e através de alto-falantes na fronteira, tentando a adesão popular ou deserções no vizinho do norte. Incluem ainda reuniões de alto nível e uma intensa atividade de aproximação cultural e esportiva que, pelas notícias divulgadas, segue se concretizando.

A lista de ações propostas, para os dois primeiros tópicos, parece  factível e muito coerente com os objetivos anunciados.

No terceiro tópico, reafirma-se o Acordo de Não Agressão e é proposto um processo de desarmamento em fases, na medida em que seja reduzida a tensão militar. Sabedores que a paz na Coreia é assunto que não se resolve sem a participação de EUA e China, são propostas reuniões trilaterais e quadrilaterais com esses países com vistas a estabelecer o fim da guerra e um sólido regime de paz permanente. Como último item, propõe-se a alcançar, através da desnuclearização completa, uma Península Coreana livre de armas nucleares. As Coreias concordaram em buscar apoio e cooperação da comunidade internacional para alcançar este objetivo.

Foram estabelecidos meios de comunicação direta entre os líderes coreanos, inclusive por via telefônica. Na crise que quase anulou a reunião entre o presidente americano e o líder norte-coreano houve notícias de intensa articulação entre as duas Coreias.

Parece haver uma determinação oriental de alcançar, com paciência e perseverança, a reunificação (termo não utilizado pelos coreanos que falam sempre de unificação). A ideia de promover encontros com os países envolvidos está sendo perseguida com persistência. Por outro lado, as iniciativas de relacionamento cultural e institucional estão acontecendo.

As duas partes souberam identificar em fatores externos os principais obstáculos à unificação. A simples assimilação da Coreia do Norte pela Coreia do Sul, como ocorreu na Alemanha, nunca seria aceita pela China, que não toleraria tropas americanas em sua fronteira o que igualmente não deseja a Rússia. A hipótese contrária, da unificação com predomínio do regime do Norte, é rechaçada pela ameaça que representa ao Japão que motivou a Guerra da Coreia no início dos anos 50. Além disso, o nível de progresso que hoje desfruta a população da Coreia do Sul funciona, como planejado, para tornar a hipótese inaceitável.

A solução parece passar por uma Coreia unificada e equidistante entre China e EUA a exemplo do que ocorreu na Áustria, inicialmente dividida ao final da segunda Guerra Mundial e unificada com o compromisso de neutralidade. O caminho indicado pela Declaração de Panmunjom é de alcançar a paz, normalizar a relação humana, cultural e comercial entre as duas Coreias para depois alcançar a unificação. Para isso, seria necessário desmontar a situação de Guerra Fria que ainda persiste, encontrando um entendimento entre China e EUA e um consentimento de Rússia e Japão.

Declarações de Donald Trump, após a reunião de cúpula com a Coreia do Norte, deram a pista de que isto foi tratado e existe alguma possibilidade de êxito. Começaria com a suspensão de manobras militares conjuntas da Coreia do Sul com os EUA que o próprio Trump reconheceu como provocativas. Obviamente a saída das tropas americanas do Sul, que o presidente americano considerou possíveis e até desejáveis no futuro, seria indispensável em um quadro de neutralidade na Península assim como uma redução da presença chinesa no Norte. O difícil é imaginar que a Administração Trump seja capaz disso, mas foi Nixon que alcançou a distensão com a China e finalizou o conflito com o Vietnam. A diferença maior talvez seja que Nixon tinha Henry Kissinger como Secretário de Estado.

Carlos Feu Alvim 

 |Cuidadosos Passos Rumo à Casa da Paz| |Agentes Envolvidos na Construção de uma Usina Nuclear| |A Desnuclrearização das Coreias|

Por que é Necessária uma Política Nuclear


Economia e Energia – E&E – Ano XX

Nº 93, Outubro a Dezembro de 2016 
ISSN 1518-2932

Porque é Necessária uma Política Nuclear

Carlos Feu Alvim e Olga Mafra

Para que um país alcance êxito, na área nuclear ou em qualquer atividade de importância estratégica necessita identificar objetivos de longo prazo e, em função deles, estabelecer uma Política de Estado. No setor nuclear, isto é naturalmente evidente porque os projetos nucleares forçosamente ultrapassam os períodos de um ou dois mandatos presidenciais, sendo ineficazes as políticas com horizonte de um mandato governamental.

Uma Política Nuclear precisa ter durabilidade e isto só é possível se ela for o reflexo da vontade nacional que demanda um consenso, também nacional e que exige uma aprovação ampla, mas não obrigatoriamente uma unanimidade.

Em 2013 a então Secretaria de Assuntos Estratégicos – SAE da Presidência da República realizou um trabalho, do qual fomos consultores que buscava estabelecer as bases do que seria uma Política Nuclear para o Brasil. A ideia parece ter tido origem nos bons resultados alcançados na Política e Estratégia de Defesa que a extinta SAE elaborou juntamente com o Ministério da Defesa.

O trabalho de preparação realizado consistiu em:

  • Reunir e estudar a legislação nacional e os tratados existentes;
  • Estudar as estruturas do setor nuclear dos sete países considerados como mais relevantes na área (China, EUA, Rússia, França, Reino Unido, Japão e Coreia do Sul) que representam, incluindo o Brasil cerca de 1/3 da população e superfície mundiais, um pouco mais da metade do PIB (tanto pelo câmbio nominal como pelo poder de compra) e cerca de 3/4 (75%) da capacidade instalada e da capacidade em construção no mundo de produção de eletricidade nuclear;
  • Retirar do exemplo desses países a expressão das Boas Práticas da Política Nuclear;
  • Localizar as vulnerabilidades e as potencialidades do Setor Nuclear no Brasil e identificar ações para prevenir as vulnerabilidades e aproveitar as oportunidades;
  • Identificar Consensos existentes e pontos sob os quais se poderiam estabelecer novos consensos.

Alcançar e expressar consensos parecia, na ocasião da elaboração do trabalho (2013/2014) não só necessário como também possível. Mesmo no clima pré-eleitoral em que ele foi finalizado. Na época, ficamos surpresos com os inúmeros pontos de consenso que o Setor Nuclear havia construído nas duas últimas décadas e que não existia nas décadas anteriores.

Entre esses pontos de consenso cabe destacar:

  • O uso da energia nuclear deve ser exclusivamente para fins pacíficos [Constituição de 1988];
  • O Brasil não dará novos passos de limitação de sua atividade nuclear enquanto não houver demonstração efetiva dos países armados no sentido do desarmamento [Política de Defesa];
  • O cumprimento do Tratado de Tlatelolco tanto pelos países da Região como pelos países que possuem armas nucleares é importante para a paz na região do Tratado;
  • O Brasil deve ampliar o uso de outras fontes em sua matriz energética de geração de eletricidade;
  • O Sistema Integrado precisa de complementação térmica na geração de base e para amenizar oscilações sazonais da hidro e enfrentar os déficits plurianuais de chuva;
  • A melhor térmica para gerar na base no longo prazo é a nuclear;
  • Energia Nuclear é estratégica;
  • O domínio do ciclo de combustível dá prestígio entre as nações;
  • É necessária a independência tecnológica na área de combustível nuclear e capacidade industrial para atender à necessidade estratégica;
  • O uso da propulsão nuclear é uma necessidade estratégica;
  • Submarino com propulsão nuclear não é arma de destruição em massa e não está proscrito;
  • Submarino com propulsão nuclear é importante para defesa do País;
  • Confiança na própria tecnologia sem negar a tecnologia já desenvolvida é importante;
  • Necessidade de uma capacidade de defesa de acordo com o porte do País;
  • A linha de reatores a ser adotada pelo País é de um PWR avançado;
  • O combustível nuclear no médio prazo é o urânio enriquecido;
  • A tecnologia de enriquecimento é a ultracentrifugação (usando o processo aqui desenvolvido);
  • A separação das partes licenciadora e fiscalizadora da CNEN das suas outras atividades é necessária;
  • Deve haver uma sinergia entre os programas nucleares civil e militar;
  • O programa nuclear da Marinha do Brasil trouxe grandes avanços tecnológicos para o País;
  • A comunidade internacional reconhece as intenções pacíficas da atividade nuclear no Brasil e não o identifica como promotor de proliferação para outros países;
  • A NUCLEP é importante para a indústria nacional e para a construção dos submarinos.

Alguns pontos foram identificados como de “consensos em formação” e poderiam constar da Política sendo que alguns deles foram debatidos em 2008 em reuniões do Conselho de Desenvolvimento do Programa Nuclear, formado pelos ministros de importância na área. Nesse consenso em formação, os seguintes pontos se destacavam:

  • Maior participação da Iniciativa Privada nas atividades nucleares sobretudo nas etapas menos críticas do ciclo nuclear como produção e purificação de urânio, uso de radioisótopos e construção de reatores;
  • Possibilidade de exportação de combustíveis nucleares desde que garantidas as necessidades nacionais ao longo da vida dos reatores existentes e planejados;
  • Necessidade de se equacionar de imediato os problemas de armazenamento de combustíveis irradiados no próprio sítio e da construção de depósito para colocação de resíduos de baixa e média atividade em local próprio;
  • Encontrar uma solução de depósito intermediário de longo prazo (horizonte de 500 anos) dos resíduos de alta atividade do ciclo nuclear com possibilidades de acesso futuro;
  • Atingir autossuficiência na produção de combustíveis para os reatores de produção de energia e pesquisa;
  • Atingir a autossuficiência em todas as fases de produção do combustível nuclear (inclusive conversão);
  • Incentivar a pesquisa mineral;
  • Ampliar o uso no Brasil de técnicas e produtos de origem nuclear nas áreas de Medicina, Indústria, Agricultura e Meio Ambiente;
  • Alcançar autossuficiência na área de produção de fármacos e atender as necessidades na área de testes de materiais mediante a instalação de Reator Multipropósito que atenderá ainda as necessidades de pesquisa e desenvolvimento.

O trabalho que realizamos sobre a Política Nuclear se encerrou em meados de 2014. A ideia era apresentar os resultados ao novo Presidente já que a proposição de uma Política fica melhor no momento de força que se supõe existir no início de mandato. A extinção da SAE e os percalços do início do governo, fizeram que a iniciativa de se fazer uma proposta de Política Nuclear fosse adiada.

Neste reinício de governo e com a crise que atingiu o País e o Setor, existe uma urgência por decisões nessa e em outras áreas. Bom seria que elas fossem tomadas visando objetivos coerentes de uma política de longo prazo. Nesse momento, o consenso possivelmente se tornou mais difícil, mas também mais necessário.

ApresentaçãoPorque é Necessária uma Política Nuclear |
O que é Estratégico na Energia Nuclear | Tango X Samba |

A Desnuclearização das Coreias.

Carlos Feu Alvim(*), Olga Mafra(*) e José Israel Vargas(**)

Ver versão em inglês automática revisada

Da Crise à Perspectiva Diplomática

No encontro na aldeia fronteiriça de Panmunjom (25/04/2018), os presidentes das duas Coreias, Kim Jong-un e Moon Jae-in (1), “confirmaram o objetivo comum de alcançar, por meio de uma desnuclearização completa, uma Península Coreana livre de armas nucleares” (Texto completo no Anexo 1).

Nessa frase que sintetizou o encontro que reverteu pelo menos por um tempo, as piores expectativas sobre uma guerra nuclear, existem dois termos que merecem atenção. O primeiro, “desnuclearização” já objeto de muitas especulações e discussões. O segundo termo, “uma Península Coreana livre de armas nucleares” tem sido interpretado como referente às armas nucleares do norte, e não a ambos os lados da atual linha de armistício.

No entanto, ao concordarem com o texto divulgado, ambas as Coreias reconhecem que existem ações a serem adotadas pelos dois lados. Na Coreia do Norte (DPRK), o objetivo seria desmontar o recém-constituído arsenal que se estima em 15 ogivas; na Coreia do Sul (ROK) o objetivo seria afastar a ameaça do armamento nuclear americano. Este armamento, que já se localizou nas bases americanas da Coreia do Sul, pode estar hoje, mesmo que temporariamente, a bordo de submarinos ou de outros veículos lançadores. Os EUA dão a entender que isto não acontece mais, mas, é o temor histórico da DPRK que justificaria sua forte reação às manobras conjuntas dos EUA e da Coreia do Sul e que poderiam incluir temidos meios de lançamento (como os B-52, comentados mais adiante).

A reunião entre as Coreias precedeu ao histórico encontro presidencial entre EUA e Coreia do Norte, realizado em 12 de junho de 2018 em Singapura. Espera-se como resultado um entendimento que pode ser, na expressão de Donald Trump, “o fim da Guerra da Coréia”.  Toda uma movimentação diplomática envolvendo principalmente a China, as duas Coreias e ainda Japão e a Rússia, como partícipes muito interessados, terminou  por conduzir ao encontro . Em um quadro de idas e vindas que já se arrasta por 65 anos, depois de encerrados os conflitos maiores, tem-se que esperar pelos próximos movimentos.

Os Arsenais Nucleares na Região

As Coreias se localizam em uma vizinhança onde a energia nuclear se destaca tanto pelo amplo uso energético (Figura 1) como sob a forma de armamentos (Figura 2).

Figura 1: Das centrais nucleares em construção no mundo 30 (53%) estão na região onde estão também 32% das atualmente existentes
Dados: PRIS/AIEA + 1 usina na DPRK, país não membro da AIEA

Figura 2: Ogivas nucleares por país na região que detém 50% do arsenal mundial – Fonte: Avaliação da Arms Control Association

As ogivas nucleares existentes também estão fortemente concentradas nos países da região (Figura 2), correspondendo à metade das existentes no mundo. Esta proporção está fortemente ligada à enorme participação do arsenal russo. Além disso, estão concentrados na região, três dos nove países possuidores de armas nucleares sendo que, alargando o círculo, encontram-se na Ásia seis dos nove países que se sabe possuírem armas nucleares.

Ou seja, esta é uma região onde a presença da energia nuclear é muito forte, marcada pelo trágico início do uso das bombas nucleares contra as cidades de Hiroshima e Nagasaki e afetada também por um dos maiores acidentes ocorrido na utilização pacífica da energia nuclear (Fukushima, Japão). Possuidora de uma forte indústria nuclear em praticamente todos os seus países e reunindo os maiores exportadores de usinas núcleo – elétricas do mundo, não se admira que o tema adquira tal importância bélica.

Registre-se, no entanto, que tem sido quase ignorado no debate atual, o histórico da presença do armamento nuclear americano na Coreia do Sul e suas vizinhanças. Este histórico é particularmente bem descrito em “A History of US Nuclear Weapons in South Korea” (2). A ameaça do uso de armas nucleares, pelos americanos, data do início da Guerra da Coreia quando, é oportuno lembrar, as tropas americanas lutavam sob a bandeira da ONU. Com efeito, já em 1951, Truman ordenou a transferência de “nuclear capsules” ou “pits” para Guam[I] justificando a ameaça pela ofensiva militar chinesa, na Coréia durante a Guerra.

A partir de 1957, o Presidente Eisenhower aprovou a transferência de armas nucleares diretamente para a Coreia do Sul. O número de ogivas nucleares, naquele país, chegou a atingir 950 em 1967 que é superior ao arsenal nuclear estimado hoje por França, Reino Unido, China, e Índia, juntos. Tal arsenal revelava-se inteiramente desproporcional à ameaça que poderia representar um país então desprovido de armamento nuclear como a Coreia do Norte. As bases americanas localizadas na Coreia do Sul encontram-se a uma distância de apenas algumas centenas de quilômetros dos territórios da China e Rússia que, logicamente, seriam à época, também alvos potenciais verdadeiros desse formidável arsenal. A análise dos especialistas ressalta, no entanto, que dado o alcance na ocasião dos lançadores existentes (canhões nucleares), elas estariam majoritariamente dirigidas para a Coreia do Norte (Figura 3).

Figura 3: Uma grande variedade de armas táticas foi instalada na Região, algumas direcionadas claramente à Coreia do Norte (alcance de alguns quilômetros), entre as quais o projétil Davy Crockett, presente na Coreia do Sul entre julho de 1962 e junho 1968. O artefato era uma espécie de “canhão nuclear” com uma potência limitada a 0,25 kilotons, sendo que o projétil pesava apenas 34,5 kg (76 lbs). (Fonte: nukestrat.com).

O Movimento de Desarmamento Nuclear dos Anos Noventa

As ações diplomáticas na região das Coreias fazem lembrar o movimento mais amplo, ocorrido no início da década de noventa. Coincidindo com o desmonte da União Soviética e a queda do muro de Berlim, vários países tomaram iniciativas visando renunciar às armas nucleares. O Brasil e a Argentina formalizaram, na ocasião, acordo de uso somente pacífico da energia nuclear e assinaram um acordo de salvaguardas amplas com a AIEA. A África do Sul desmontou seu programa de produção de armamento nuclear. A Coreia do Norte já havia aderido ao TNP em 1985 (3), mas não havia assinado o acordo de salvaguardas abrangentes com a AIEA, alegando a presença de armas americanas na Coreia do Sul. Em setembro de 1991, o Presidente Bush (pai) determinou a retirada das armas nucleares da Coreia do Sul, criando condições para que a Coreia do Norte não se retirasse do TNP, como havia ameaçado. As duas Coreias também aceitaram a “desnuclearização” da Península em um encontro de altas autoridades dos dois países em 1992[II] (4). Na ocasião, o termo “desnuclearização” foi claramente definido como: não testar, manufaturar, produzir, receber, possuir, estocar, implantar ou usar armas atômicas; usar a energia nuclear somente para fins pacíficos e não possuir instalações de enriquecimento de urânio e reprocessamento de combustível irradiado. Ou seja, “desnuclearização” no contexto histórico coreano tem um significado mais amplo que a mera eliminação de armas nucleares e inclui a renúncia ao reprocessamento e enriquecimento. Não há certeza de que essa interpretação ampliada continue válida. De qualquer forma, ela significa a completa eliminação de armas nucleares da península coreana, incluindo, na ocasião, o arsenal americano instalado em território da Coreia do Sul durante trinta e três anos.

Na época, foi inclusive acertado um mecanismo de verificação entre as duas Coreias cujo principal obstáculo foi a insistência da Coreia do Norte em verificar a efetiva retirada de armas nucleares das bases americanas da Coreia do Sul. Existe uma semelhança dessa solução de inspeção mútua com a encontrada, também em 1992, para Brasil e Argentina com a criação da ABACC[III] que instituía um sistema de contabilidade e controle nuclear entre os dois países. Havia, por isso, a expectativa de que o sistema de verificação implantado pela ABACC pudesse se aplicar àquela conflagrada região. Tal hipótese propiciou vários contatos entre a equipe da ABACC e técnicos e autoridades da Coreia do Sul e do Japão, com apoio e participação de técnicos dos EUA. A situação entre Brasil e Argentina era notoriamente muito menos tensa que a entre as Coreias, mas havia algumas semelhanças, a maior delas talvez fosse que os dois países tinham, como ainda têm, muito interesse em se aproximar e buscavam aproveitar as profundas mudanças que estavam ocorrendo no mundo para resolver suas pendências. Lá como aqui, era mais fácil resolver os problemas bilateralmente do que cedendo a pressões internacionais.

Um grupo hexapartito do qual participavam China, Rússia e Japão, além de EUA e as duas Coreias, também tentou equacionar os problemas relacionados ao abastecimento elétrico da Coreia do Norte. Montou-se um esquema que incluía o fornecimento de óleo pelos EUA para a geração de energia elétrica e a construção de usinas nucleares de água leve cujo combustível irradiado não se presta à produção de plutônio para armas como o reator (gás-grafite) da usina construída pela Coreia do Norte. Este entendimento entre os seis países é conhecido, em inglês, como The Six-Party Talk (5).

Note-se que a Coreia do Norte estava, naquela ocasião, em uma situação econômica frágil, pois tinha perdido a proteção nuclear com a desintegração da União Soviética. Assim, aceitou paralisar e desmontar parcialmente o reator que estava sendo utilizado para a produção de plutônio, em troca de óleo fornecido pelos americanos para, no curto prazo, gerar energia elétrica com usinas térmicas convencionais; no futuro, seria abastecida por energia nuclear das usinas que seriam construídas por um consórcio a ser criado entre a Coreia do Sul e o Japão.

No final da década de 1990, no entanto, o Quadro Acordado entre EUA e Coreia do Norte como resultado das conversações multilaterais e entre os dois países (1994 Agreeded Fremework) encontrava dificuldades (6). Em parte devido à oposição do seu Congresso, os Estados Unidos atrasaram a entrega dos benefícios prometidos à Coréia do Norte. Em particular, se atrasaram na construção dos reatores de água leve (criando obstáculos à criação prometida do consórcio Japão Coréia do Sul, para tal fim) e repetidamente falharam no fornecimento de petróleo. Também levantaram apenas poucas das sanções existentes, mantendo ainda a Coreia do Norte incluída na lista de estados patrocinadores do terror.

Obstáculos aos Entendimentos Futuros

Em mais de uma ocasião, os compromissos assumidos em documentos firmados entre a Coreia do Norte, os Estados Unidos e outros países vizinhos não foram cumpridos. Isso explica, em parte, a desconfiança e as frequentes mudanças de atitude do governo norte-coreano.

A Coreia do Norte tem, em diferentes oportunidades, manifestado seu receio com as manobras conjuntas da Coreia do Sul e os EUA. Esta preocupação já manifesta à época, explica-se porque elas traziam de volta às águas e portos da região armamentos nucleares ou equipamentos (aviões como o B52 e submarinos) que, mesmo declaradamente sem armas nucleares, possuem capacidade para lançá-las. Lembrar que os EUA mantinham e mantêm na Coreia do Sul bases que ainda reúnem cerca de 30 mil militares americanos, possivelmente suficientes para sustentar uma infraestrutura de manutenção de armas nucleares.

Os entendimentos anteriores foram prejudicados também pela “falta de pressa”, como se queixou a DPRK, em resolver os problemas de suprimentos norte-coreanos e a implantação das medidas acertadas. Isso talvez se explique pela expectativa dos EUA principalmente, na década de noventa, de que, assim como acontecera com a Alemanha Oriental, a Coreia do Norte simplesmente viesse a desmoronar. Ocorre que a Coreia do Norte, certamente a exemplo da China não aceitou este jogo e continuava em paralelo a execução das atividades de seu plano de armamentos. A ação espetacular de explodir a torre de refrigeração da usina a gás-grafite (produtora de plutônio), por exemplo, considerava o fato de que eles já possuíam quantidades consideráveis de combustível irradiado, suficiente para a construção de vários artefatos e levava também em conta a possibilidade do uso da refrigeração direta do reator com água disponível de rio das proximidades. Aliás, a Coreia do Norte voltou a separar plutônio para bombas nucleares tão logo houve o rompimento com AIEA, decorrente de sua saída do TNP, fruto do tumultuado relacionamento estabelecido com aquela Agência. Parece bem provável que a Coreia do Norte nunca tenha verdadeiramente renunciado a seus planos armamentistas, mas que tenha apenas adequado sua execução para limitar ou adiar o que constituiriam violações diretas ao Acordo de Salvaguardas.

Também surgiram evidências de atividades de enriquecimento de urânio, que é a rota alternativa para obter o artefato nuclear. Diante dos indícios encontrados pelas inspeções da AIEA, o Japão suspendeu o financiamento das novas usinas PWR (7). Essas atividades para enriquecer urânio foram posteriormente confirmadas pela própria Coreia do Norte.

Na presente fase de negociações, a Coreia do Norte encontra-se em uma situação econômica tão ou mais difícil da que a afetou há 20 anos, no entanto dispondo agora do trunfo de haver comprovado sua posse de armamentos nucleares, bem como sua capacidade de lançamento de artefatos por mísseis de considerável alcance, embora não se tenha provas do suposto sucesso na miniaturização do armamento nuclear adequada ao referido transporte. Com a extraordinária capacidade de avançar tecnologicamente, evidenciada no setor do combustível nuclear, dos mísseis lançadores e na área de bombas nucleares (inclusive a bomba H), torna-se claro que a despeito do cerco montado contra ela nas áreas de armamentos nucleares e foguetes lançadores, não subsiste muita margem para se continuar considerando as afirmativas sobre o arsenal da Coreia do Norte como simples bravatas.

Registre-se que os entendimentos esboçados em 1992 também surgiram em um momento tenso onde a Coreia do Norte havia ameaçado deixar o TNP (o que acabou fazendo em 10/01/2003). O compromisso de “desnuclearização” conforme definido na época ia além dos compromissos dispostos no Tratado de Não Proliferação Nuclear – TNP e implicavam em abrir mão das etapas críticas de enriquecimento e reprocessamento (no entanto permitidos a outros países signatários do acordo). Sobre esses pontos, como se sabe, a Coreia do Norte alcançou o domínio do enriquecimento de urânio, do reprocessamento de plutônio e da fabricação e teste de explosivos nucleares.

Enquanto isso, a Coreia do Sul, não obstante seus avanços na área de uso pacífico da energia nuclear foi forçada por acordos com os EUA, a não desenvolver enriquecimento e reprocessamento que são necessidades naturais do seu programa nuclear que inclui a produção de reatores de água leve, que necessitam enriquecimento e reatores de água pesada cujo aproveitamento pleno do combustível necessita do reprocessamento. A renovação do acordo com os EUA deveria ser discutida em 2013, mas, suas diferenças eram grandes demais para serem resolvidas, levando-os a assinar um contrato separado para estender a data de seu vencimento. Depois de anos de negociações discretas, mas altamente sensíveis, em 2015 os Estados Unidos e a Coréia do Sul anunciaram um tratado revisado que continua a negar – mas não exclui permanentemente à Coreia do Sul o direito de enriquecer urânio ou reprocessar combustível nuclear irradiado, mesmo para fins pacíficos. Pelo ROK USA 123 Agreement (8) de 2017 houve a preocupação de assegurar à Coreia do Sul a capacidade externa de enriquecimento que necessita para seu vigoroso programa nuclear que inclui ações em curso para exportação de usinas para outros países. O abastecimento futuro dos reatores a água leve é outro ponto sobre o qual a Coreia do Norte também poderá exigir garantias para desmantelar ou limitar suas atuais capacidades. 

A lista de ações diplomáticas desenvolvidas há décadas pela Coreia do Norte junto a todos os outros países interessados chega a ser surpreendente para um regime tão fechado como se considera ser a DPRK. A linha adotada pela Coreia do Norte, ao longo de décadas, foi manter sempre abertos canais de diálogo com os diversos países envolvidos, ao mesmo tempo, pode-se observar, de parte a parte, uma longa sucessão de quebra de compromissos. Da parte da Coreia do Norte, é a tática de “um passo a trás e dois para frente”, uma variação pragmática da famosa frase leninista. Deve-se reconhecer, entretanto, que os EUA também não se notabilizaram pela manutenção dos passos acordados, havendo constantes pretextos para adiar ou cancelar compromissos. O recente histórico da Administração Trump e a atitude frente aos compromissos americanos anteriormente firmados com o Irã principalmente, não encoraja os acordos. Um fator importante a ser considerado é que a presente situação da Coreia do Norte é de menos fragilidade que as anteriores. Quem sabe tenha surgido agora uma oportunidade para a “Paz dos Fortes”, apesar da disparidade entre EUA e DPRK, mas contando possivelmente com o possível o apoio dos demais “fortes” da região.

Nota Complementar sobre o Andamento das Negociações:

Em 13 de Maio de 2018 o Secretário de Estado dos EUA, Mike Pompeo (9) disse que se a Coréia do Norte fizer um desmantelamento total de seu programa de armas nucleares, o governo Trump permitirá que o setor privado americano invista naquele país. Mesmo assim em 15 de maio Kim Jong-un declarou que talvez não mais se reunisse com o Presidente dos Estados Unidos (10), pois as manobras conjuntas da Coreia do Sul e EUA haviam recomeçado recentemente e a suspensão disso seria parte do acordo de “desnuclearização”.

Em maio de 2018, a Coreia do Norte suspendeu a reunião militar com a Coreia do Sul, justificada pelas manobras militares conjuntas ROK-USA, e também ameaçou suspender a reunião com o Presidente Americano. Como resultado, foi anunciado que os EUA teriam concedido que não houvesse participação de B-52 nos treinamentos o que demonstra a alta sensibilidade da DPRK quanto a vetores de armas nucleares[IV] (11).

 Em 23/05/2018 a Coreia do Norte anunciou o desmantelamento do campo subterrâneo de testes de explosões nucleares de Punggye, tendo convidado vários jornalistas estrangeiros que testemunharam o desmantelamento (explosão de túneis) noticiada em 24/05/2018 pela agência chinesa CGTN “DPRK ‘dismantles’ Punggye-ri nuclear test site”. É interessante notar as aspas colocadas pela agência chinesa que já havia noticiado que os últimos testes haviam desestabilizado o terreno o que causou inquietação na China já que o local de testes é muito próximo à sua fronteira com a DPRK. Também o The Guardian noticiou o colapso em North Korea nuclear test site has collapsed and may be out of action – China study (12).

Ainda em 24/05/2018 foi divulgada a carta do Presidente Trump cancelando (ou adiando) a reunião de 12 de junho de 2018 alegando linguagem hostil do chefe de estado norte coreano. A mensagem agradece a liberação de cidadãos americanos e deixa aberta a porta para futuro encontro. Não obstante esse tom, novas ameaças do uso da arma nuclear foram feitas entre os países. O NY Times noticiou a posição do president Americano: Trump Pulls Out of North Korea Summit Meeting with Kim Jong-un (13). As referências ao caso da Líbia feitas pelo Vice-Presidente Americano e a resposta norte-coreana azedaram de vez o clima entre os países e confirmam a falsa expectativa dos americanos que a Coreia no Norte estivesse simplesmente disposta a renunciar unilateralmente às armas nucleares quando pretendia negociar, em uma posição de força, em virtude do sucesso que acredita haver alcançado no desenvolvimento das armas e dos lançadores.

Após este evento, houve intensa movimentação diplomática envolvendo principalmente China, Japão e as duas Coreias que se empenham em viabilizar a reunião de Trump com Kim Jong-un. Encontros preparatórios entre delegações da Coreia do Norte e dos EUA foram  realizadas, mantendo-se a expectativa de que ocorresse a reunião. Finalmente, em 01/06/2018, o próprio presidente americano anunciou a confirmação da reunião para o dia 12/06/2018 em Singapura (Trump Announces That North Korea Summit Meeting Is Back On).

Em 12/06/2018 o Presidente dos Estados Unidos da América, Donald J. Trump e o Presidente Kim Jon-un da  República Democrática Popular da Coreia (DPRK)  realizaram em  Singapura uma reunião histórica conforme noticiado em jornais do mundo todo inclusive a agência chinesa CGTN de onde foi retirada a transcrição mostrada no Anexo 2 (tradução própria). A mensagem é bastante vaga, mas registra o compromisso de novas relações EUA/DPRK,  a união de esforços para uma paz duradoura na Península Coreana, reafirma o empenho na desnuclearização completa da Península Coreana da Declaração de Panmunjon (dos dois chefes de estado coreanos)  e se compromete com a recuperação dos prisioneiros e desaparecidos na Guerra da Coreia.

Trump disse após a reunião que a retirada das tropas americanas da República da Coréia ROK) era uma aspiração que não aconteceria no curto prazo,  mas acrescentou que os exercícios militares com Seul “muito caros” e “provocativos” cessariam.

As falas do Presidente Trump anunciam concessões justamente em pontos aqui analisados, ou seja: as manobras serão restringidas porque contêm simulações de atos contra a Coreia do Norte, inclusive a utilização de armamentos nucleares. Além disso, foi anunciada a possibilidade de reduzir ou eliminar as tropas estacionadas na Coreia do Sul. Dentro da concepção norte-coreana, isso faz parte da “desnuclearização” da Península.

Vale a pena lembrar, que o encontro presidencial entre as duas Coreias apresentou um roteiro detalhado e coerente de reaproximação e unificação da Península Coreana que é o objetivo final do Acordo. Na prática, o único cenário que parece plausível para essa união seria o de uma Coreia unificada neutra. Existe o precedente para a Áustria do pós Segunda Guerra Mundial, inicialmente dividida entre o bloco ocidental e soviético e depois unificada como país neutro.  

Sobre os autores:
(*) Carlos Feu Alvim e Olga Mafra são redatores da Revista E&E e integraram a equipe da ABACC desde sua fundação, nela permanecendo  por mais de 11 anos. O primeiro foi Secretário da ABACC do lado brasileiro, e a segunda Oficial de Operações e Apoio Técnico; e ambos participaram das discussões sobre a aplicação do modelo ABACC na Península Coreana e Japão com técnicos da Coreia do Sul, Japão e EUA.

(**) José Israel Vargas, foi Ministro da Ciência e Tecnologia nos governos Itamar e FHC (primeiro período), embaixador do Brasil junto a UNESCO e Presidente do seu Conselho e coordenou a chamada “Comissão Vargas” que analisou o Programa Nuclear Brasileiro no Governo Sarney cujo relatório propôs inspeções mútuas entre Brasil e Argentina, uma das bases do processo de verificação da ABACC. Foi ainda membro da Comissão Deliberativa da CNEN na administração de Marcelo Damy,  atuando como delegado brasileiro na Junta de Governadores da AIEA, onde também foi membro do International Nuclear Data Committee.

Bibliografia

  1. Sharman, Jon. Independent. Kprea Sumit: Read the Panmunjon Declaration in Full. [Online] April 27, 2018. https://www.independent.co.uk/news/world/asia/korea-summit-panmunjom-declaration-full-read-kim-jong-un-north-south-moon-jae-in-a8325181.html.
  2. Norris, Hans M. Kristensen and Robert S. A History of US Nuclear Weapons in South Korea. Globsl Research. [Online] Taylor & Francis on line, October 26, 2017. https://www.globalresearch.ca/a-history-of-us-nuclear-weapons-in-south-korea/5623878.
  3. Kirgis, Frederic L. Nort Korea’s withdrawal from the Nuclear Nonproliferation Treaty. American Society of International Law. [Online] ASIL, January 24, 2003. https://www.asil.org/insights/volume/8/issue/2/north-koreas-withdrawal-nuclear-nonproliferation-treaty.
  4.  joint declaration text from two Koreas. Joint Declaration of South and North Korea on the Denuclearization of the Korean Peninsula. Nuclear Threat Initiative . [Online] NTI, february 19, 1992. http://www.nti.org/media/pdfs/aptkoreanuc.pdf.
  5. Arms Control Association. The Six-Party Talks at a Glance. ArmsControl. [Online] ACA, july 2017. https://www.armscontrol.org/factsheets/6partytalks .
  6. The U.S.-North Korean Agreed Framework at a Glance. ArmsControl. [Online] ACA, august 2017. https://www.armscontrol.org/factsheets/agreedframework .
  7. Center of Nonproliferation Studies. CNS Resources on North Korea’s Ballistic Missile Program. Library of Congress (USA). [Online] Center of Nonproliferation Studies, august 31, 1998. http://webarchive.loc.gov/all/20011123193323/http://cns.miis.edu/research/korea/factsht.htm .
  8. US and ROK Agreement. US Department of State. U.S.-Republic of Korea (R.O.K.) Agreement for Peaceful Nuclear Cooperation. [Online] DOS, january 20, 2017. https://www.state.gov/t/isn/rls/fs/2017/266968.htm .
  9. CBSNEWS. Transcript: Secretary of State Mike Pompeo on “Face the Nation,” May 13, 2018. CBSNews. [Online] CBS, may 13, 2018. https://www.cbsnews.com/news/transcript-secretary-of-state-mike-pompeo-on-face-the-nation-may-13-2018/ .
  10. NY Times. North Korea Threatens to Call Off Summit Meeting With Trump. NYTimes. [Online] NYTimes, may 15, 2018.
  11. Vox. North Korea is already getting concessions ahead of Trump-Kim talks. vox. [Online] vox, may 18, 2018.
  12. The Guardian. North Korea nuclear test site has collapsed and may be out of action – China study. TheGuardian. [Online] The Guardian, april 26, 2018. https://www.theguardian.com/world/2018/apr/26/north-korea-nuclear-test-site-collapse-may-be-out-of-action-china .
  13. Landler, Mark. Trump Pulls Out of North Korea Summit Meeting With Kim Jong-un. NYTimes. [Online] NY Times, May 25, 2018. https://www.nytimes.com/2018/05/24/world/asia/north-korea-trump-summit.html .

________________________________________

[I] Ilha no Pacífico (Micronésia) sob controle americano a 3400 km da capital da Coreia do Norte (Pyongyang). Guam esteve recentemente nos noticiários ao ser ameaçada de ataque pela Coreia do Norte.

[II] A Declaração de Desnuclearização da Península Coreana foi uma linha de ação acordada entre as Coreias do Sul e do Norte assinada em 20 de janeiro de 1992 e em vigência desde 19 de fevereiro do mesmo ano. A Coreia do Norte comprometeu-se a permanecer como parte do Tratado de Não Proliferação – TNP do qual havia anunciado sua retirada. A  versão em inglês da Joint Declaration on the Denuclearization of the Korean Peninsula   é mostrada no Anexo 3.

[III] Brasil e Argentina assinaram o Acordo Bilateral de Usos Somente Pacíficos da Energia Nuclear, que criou a Agência Brasileiro – Argentina de Contabilidade e Controle de Materiais Nucleares – ABACC com a qual assinaram o Acordo Quadripartito de Salvaguardas (abrangentes) com a Agência Internacional de Energia Atômica – AIEA; estas iniciativas interessaram diretamente a Coreia do Sul, Japão e aos EUA com quem os responsáveis pela ABACC mantiveram vários contatos, visando aproveitar sua experiência em uma esperada possível distensão entre as Coreias.

[IV] “Citing unnamed US officials, the Wall Street Journal reported on Friday that Seoul was worried Pyongyang might bristle at a joint US-South Korea-Japan air exercise, especially because the US planned to fly B-52 planes”.  
https://www.vox.com/2018/5/18/17368468/north-korea-trump-usa-south-korea-b52

______________________________________

Anexo 1: Declaração das duas Coreias em 27 de Abril de 2018

Transcrição a  partir do Site da Agência Reuters 

Korea summit: Read the Panmunjom Declaration in full

Tradução própria a partir da transcrição do Site da Agência Reuters

Declaração da Panmunjom pela Paz, Prosperidade e Unificação da Península da Coreia

Abaixo está a declaração conjunta da Coréia do Norte e da Coréia do Sul, divulgada pelo gabinete presidencial sul-coreano em 27/04/2018, depois que o líder norte-coreano Kim Jong-un e o presidente sul-coreano Moon Jae-in se comprometeram a trabalhar para a “completa desnuclearização” da Península Coreana”. Ele pontuou um dia de sorrisos e apertos de mão no primeiro encontro inter-coreano em mais de uma década.

O presidente sul-coreano Moon Jae- in cumprimentou o líder norte-coreano Kim Jong-un durante a reunião na Casa da Paz na aldeia de Panmunjom, dentro da zona desmilitarizada que separa as duas Coreias, na Coreia do Sul, em 27 de abril de 2018. 

Durante este período de transformação histórica na península coreana, refletindo a aspiração duradoura do povo coreano pela paz, prosperidade e unificação, o Presidente Moon Jae-in da República da Coréia e o Presidente Kim Jong-un da ​​Comissão de Assuntos do Estado da República Popular Democrática da Coréia realizaram uma Reunião de Cúpula Inter-Coreana na ‘Casa da Paz’ em Panmunjom em 27 de abril de 2018.

Os dois líderes solenemente declararam, perante os 80 milhões de coreanos e o mundo inteiro, que não haverá mais guerra na península coreana e, portanto, uma nova era de paz começou.

Os dois líderes, compartilhando o firme compromisso de encerrar rapidamente a velha herança da Guerra Fria de divisão e confronto de longa data, abordam corajosamente uma nova era de reconciliação nacional, paz e prosperidade, e de melhorar e cultivar as relações intercoreanas na região de uma maneira mais ativa, declararam neste local histórico de Panmunjom conforme segue:

1. As Coreias do Sul e Norte reconectarão as relações de sangue do povo e anteciparão o futuro da co-prosperidade e unificação liderada pelos coreanos, facilitando um avanço abrangente e inovador nas relações entre as Coreias. Melhorar e cultivar as relações intercoreanas é o desejo predominante de toda a nação e o chamado urgente dos tempos que não podem mais ser retidos.

1) As Coreias do Norte e do Sul afirmaram o princípio de determinar o destino da nação coreana por conta própria e concordam em fazer do momento um divisor de águas para a melhoria das relações intercoreanas, implementando totalmente todos os acordos e declarações existentes entre os dois lados até agora.

2) As Coreias do Sul e Norte concordaram em manter diálogo e negociações em vários campos, inclusive no alto nível, e tomar medidas ativas para a implementação dos acordos alcançados na reunião de Cúpula.

3) As Coreias do Sul e Norte concordaram em estabelecer um escritório  conjunto com representantes residentes de ambos os lados na região de Gaeseong, a fim de facilitar a consulta próxima entre as autoridades, bem como o intercâmbio e cooperação entre os povos.

4) As Coreias do Sul e Norte concordaram em encorajar uma cooperação mais ativa, intercâmbios, visitas e contatos em todos os níveis, a fim de rejuvenescer o senso de reconciliação nacional e unidade. O Sul e o Norte, ambos os lados encorajarão entre eles a atmosfera de amizade e cooperação, organizando ativamente vários eventos conjuntos nas datas que têm significado especial para as Coreias do Sul e do Norte, como 15 de junho, em que participantes de todos os níveis, incluindo e os governos locais, parlamentos, partidos políticos e organizações civis estarão envolvidos. Na frente internacional, os dois lados concordaram em demonstrar sua sabedoria coletiva, talentos e solidariedade, participando conjuntamente em eventos esportivos internacionais, como os Jogos Asiáticos de 2018.

5) As Coreias do Sul e do Norte concordaram em resolver rapidamente as questões humanitárias que resultaram da divisão da nação, e convocar a Reunião da Cruz Vermelha Inter-Coreana para discutir e resolver várias questões, incluindo a reunião de famílias separadas. Nesse sentido, as Coreias do Norte e do Sul concordaram em prosseguir com os programas de reunião das famílias separadas por ocasião do Dia da Libertação Nacional de 15 de agosto deste ano.

6) As Coreias do Sul e Norte concordaram em implementar ativamente os projetos previamente acordados na Declaração de 4 de outubro de 2007, a fim de promover o crescimento econômico equilibrado e a co-prosperidade da nação. Como primeiro passo, os dois lados concordaram em adotar medidas práticas para a conexão e modernização das ferrovias e estradas no corredor leste de transporte, bem como entre Seul e Sinuiju para sua utilização.

2. As Coreias do Sul e do Norte farão esforços conjuntos para aliviar a aguda tensão militar e praticamente eliminar o perigo de guerra na península coreana.

1) As Coreias do Sul e Norte concordaram em cessar completamente todos os atos hostis uma contra a outra em todos os domínios, incluindo terra, ar e mar, que são a fonte de tensão e conflito militar. Neste sentido, os dois lados concordaram em transformar a zona desmilitarizada em uma zona de paz em um sentido genuíno, cessando em 2 de maio deste ano todos os atos hostis e eliminando seus meios, incluindo a transmissão através de alto-falantes e distribuição de folhetos, nas áreas ao longo Linha de Demarcação Militar.

2) As Coreias do Norte e do Sul concordaram em elaborar um esquema prático para transformar as áreas ao redor da Linha de Limite do Norte no Mar do Oeste em uma zona de paz marítima, a fim de prevenir confrontos militares acidentais e garantir atividades de pesca seguras.

3) As Coreias do Norte e do Sul concordaram em tomar várias medidas militares para garantir a cooperação mútua ativa, trocas, visitas e contatos. Os dois lados concordaram em realizar reuniões frequentes entre autoridades militares, incluindo a Reunião de Ministros da Defesa, para discutir e resolver imediatamente as questões militares que surgirem entre eles. A este respeito, os dois lados concordaram primeiramente em  convocar conversações militares, no nível hierárquico de general, em maio.

3. As Coreias do Sul e Norte cooperarão ativamente para estabelecer um regime de paz permanente e sólido na Península Coreana. Acabar com o atual estado antinatural de armistício e estabelecer um robusto regime de paz na Península Coreana é uma missão histórica que não deve mais ser adiada.

1) As Coreias do Norte e do Sul reafirmaram o Acordo de Não-Agressão que impede o uso da força de qualquer forma entre si e concordaram em aderir estritamente a este Acordo.

2) As Coreias do Norte e do Sul concordaram em realizar o desarmamento  em fases, à medida que a tensão militar é aliviada e são feitos progressos substanciais na construção da confiança militar.

3) Durante este ano que marca o 65º aniversário do Armistício, as Coreias do Norte e do Sul concordaram em realizar ativamente reuniões trilaterais envolvendo as duas Coreias e os Estados Unidos, ou reuniões quadrilaterais envolvendo as duas Coreias, os Estados Unidos e a China com vistas a declaração do fim da guerra e o estabelecimento de um regime de paz permanente e sólido.

4) As Coreias do Sul e Norte confirmam o objetivo comum de realizar, através da desnuclearização completa, uma península coreana livre de armas nucleares. As Coreias do Sul e do Norte compartilharam a opinião de que as medidas iniciadas pela Coréia do Norte são muito significativas e cruciais para a desnuclearização da península coreana e concordaram em desempenhar suas respectivas funções e responsabilidades a esse respeito. As Coreias do Sul e do Norte concordaram em buscar ativamente o apoio e a cooperação da comunidade internacional para a desnuclearização da península coreana.

Os dois líderes concordaram, através de reuniões regulares e conversas telefônicas diretas, em realizar discussões frequentes e francas sobre questões vitais para a nação, fortalecer a confiança mútua e em conjunto se esforçar para fortalecer o impulso positivo para o avanço contínuo das relações intercoreanas, bem como paz, prosperidade e unificação da península coreana.

Neste contexto, o Presidente Moon Jae-in concordou em visitar Pyongyang neste outono.

27 de abril de 2018

Realizado em Panmunjom

Moon Jae-in Presidente da República da Coréia

Kim Jong-un  Presidente da Comissão de Assuntos Estatais da República Democrática Popular da Coréia_________

Anexo 2: Declaração da Reunião Presidencial US X DPRK (Tradução Própria do original publicado pela agência chinesa CGTN)

 Reconhecendo que a criação de confiança mútua pode promover a desnuclearização da Península Coreana, o Presidente Trump e o Presidente Kim Jong-un firmaram o seguinte Compromisso:

1. Os Estados Unidos e a DPRK comprometem-se a estabelecer novas relações EUA-DPRK de acordo com o desejo dos povos dos dois países pela paz e prosperidade.
2. Os Estados Unidos e a DPRK unirão os seus esforços para construir um regime de paz duradouro e estável na Península da Coréia.
3. Reafirmando a Declaração de Panmunjom de 27 de abril de 2018, a DPRK compromete-se a trabalhar para a desnuclearização completa da península coreana.
4. Os Estados Unidos e a DPRK comprometem-se a recuperar prisioneiros de guerra e desaparecidos em ação, remanescentes, incluindo o repatriamento imediato daqueles já identificados.  

https://news.cgtn.com/news/3d3d414e7a63444d78457a6333566d54/share_p.html

Anexo 3: Declaração das duas Coreias em 20 de janeiro de 1992

Tradução própria a partir do artigo Joint Declaration on the Denuclearization of the Korean Peninsula   é mostrada a seguir.

“Desejando eliminar o perigo da guerra nuclear através da desnuclearização da península coreana, 

  • As Coreias do Sul e do Norte não devem testar, fabricar, produzir, receber, possuir, armazenar, implantar ou usar armas nucleares.
  • As Coreias do Sul e do Norte devem usar energia nuclear apenas para fins pacíficos. 
  • As Coreias do Sul e do Norte não devem possuir instalações nucleares de reprocessamento e enriquecimento de urânio. 

Assinado por Chung Won – Primeiro Ministro da República da Coreia; e Yon Hyong-muk,  Primeiro Ministro do Conselho de Administração da República Democrática Popular da Coreia (DPRK) ”

O Futuro de Angra 3

Artigos e notícias sobre Angra 3. clicar nos destaques para acessar

 Desde que a usina Angra 2 entrou em funcionamento em 2001, minorando os efeitos do apagão naquele ano, a deliberação de dar prosseguimento da construção de Angra 3 começou a ser tomada. Naquele ano, a decisão n° 5 do Conselho Nacional de Política Energética – CNPE autorizava a Eletronuclear “a retomar ações relativas ao empreendimento de geração termonuclear da Usina Angra 3”.  [1]

 A efetiva retomada de Angra 3 se arrastou por praticamente uma década, já que só em 2010 foram completadas as licenças ambientais da CNEN e IBAMA [2]. Recomeçadas em 2010, as obras foram interrompidas em 2015 por duas razões principais: A tarifa futura acertada para Angra 3 era insuficiente para cobrir os custos de construção, e isto levou a Eletronuclear a patrimônio negativo, aplicando-se uma norma nova internacional (de impairment),  de uma maneira que pode ser considerada duvidosa. A segunda razão foi uma redução arbitrária tarifa para Angra 1 e 2 que não permitia o aporte de recursos próprios. Com isso, chegou-se a inviabilidade de Angra 3.

A Revista E&E dedicou boa parte de seu número 98 a este debate. Neste “post” que antecipa parte das matérias do N° 99 chama-se, atenção também para outras contribuições sobre o tema.


[1] Resolução n° 5, de 5 de dezembro de 2001 que autoriza a Eletronuclear a retomar ações relativas ao empreendimento de geração   termonuclear da Usina de ANGRA III, e dá outras providências.

[2] Autorização do início das obras de Angra 3 pelo IBAMA através da Licença de Instalação nº 591/2009 de 05/03/2009 e Licença de Construção pela  Resolução CNEN  n° 077/2010, de 25/05/2010.

Proposta para a Política Nuclear Brasileira

A Folha de São Paulo sob o título  Temer retoma plano nuclear e governo prevê várias usinas .      O artigo menciona os resultados de Grupo de Trabalho instituído pelo Comitê de Desenvolvimento do Programa Nuclear Brasileiro – CDPNB, em 11/01/2018, por portaria do Ministro Chefe do Gabinete de Segurança Institucional da Presidência da República GSI/PR cuja finalidade é elaborar um proposta para a Política Nuclear Brasileira. A proposta foi apreciada, como informa a Folha, em  reunião do CDPNB que reúne os principais ministros relacionados com a atividade nuclear, no último dia 05 de julho.

A E&E, em sua edição de nº 93, assinalou a necessidade de se chegar a uma Política Nuclear de Estado para o Brasil. Em boa hora surge uma proposta que, para ser efetiva, deve alcançar uma aprovação da Sociedade. Como indicado na reportagem, a proposta se atém (como deveria) às diretivas gerais para este setor estratégico da atividade industrial e tecnológica com profundas implicações na soberania nacional. Sua aprovação, por uma ampla gama de ministérios que vai da Defesa ao Meio Ambiente, indica que foi possível alcançar  um consenso dentro do Governo que deve facilitar sua adoção pela Sociedade.  

Moreira Franco visita Instalações Nucleares e defende a Retomada das  Obras de  Angra 3 (Petronoticias 01/07/2018)

 O ministro de Minas e Energia,Moreira Franco, fez uma visita à Central Nuclear de Angra dos Reis tendo sido recebido pelo Presidente da  Eletronuclear,  Leonam Guimaraes,  e considerou importante conhecer de perto as instalações nucleares do Brasil.

O Presidente da Eletronuclear acredita que para reiniciar a construção de Angra 3,  é preciso discutir primeiro  o contrato de venda da energia que será produzida pela usina – cujo  preço está defasado- e  equiparar os preços ao mercado internacional viabilizando o equilíbrio econômico-financeiro do empreendimento.   A segunda questão é renegociar as dívidas decorrentes do financiamento.  Por último, a empresa precisa fechar um novo modelo de negócios para Angra 3, que permita a participação privada, mantendo o controle da União.

CNPE criou o Grupo de Trabalho para discutir o Contrato de Venda da Energia que será produzida por Angra 3 (29/06/2018)

De acordo com informação da  Petronoticias o Conselho Nacional de Política Energética (CNPE) criou recentemente um grupo de trabalho para discutir o contrato de venda da energia que será produzida por Angra 3.  O grupo, conforme determinado, conta com a participação de vários ministérios e inclui também a Empresa de Pesquisa Energética (EPE) e a Eletrobras. 

Com o valor atual  de tarifa defasado,  a usina de Angra 3 está impossibilitada de retomar as obras em virtude do comprometimento de seu equilíbrio econômico-financeiro . A Eletronuclear aguarda essa   revisão do valor da tarifa para  renegociar os financiamentos existentes e  escolher um parceiro privado que traga aportes essenciais para concluir Angra 3.

O Ministro de Minas e Energia Moreira Franco, visita a Central Nuclear de Angra dos Reis para conhecer a usina de Angra 2 e  o canteiro de obras de Angra 3 que se encontra paralisada desde 2015.

Perda de Validade de MP deixa o Setor Elétrico envolto em Questões Pendentes (Angra 3 inclusive) (Valor Econômico 19/06/2018)

Para o caso específico de Angra 3 (obras  atualmente paralisadas) a solução prevista na MP 814 era um aumento da tarifa para atingir valores internacionais de modo a retomar a viabilidade econômico – financeira do empreendimento.  Foi então decidida pelo Conselho Nacional de Política Energética (CNPE)  a criação de um grupo de trabalho composto por vários Ministérios além da Empresa de Pesquisa Energética (EPE) e da Eletronuclear,  braço de geração de energia nuclear da Eletrobras.

Embora  a resolução do CNPE, que formaliza a criação do grupo de trabalho  ainda não tenha sido publicada, o grupo já se encontrou esta semana com integrantes do Ministério de Minas e Energia (MME).  A principal alternativa em estudo  é a publicação de uma portaria do MME permitindo o reajuste tarifário de Angra 3,  após o aval do  CNPE.  Com a correção tarifaria, a Eletronuclear pode fechar a parceria com um sócio estrangeiro minoritário  para concluir a obra da usina.

Governo irá aumentar a Tarifa de Angra 3 e viabilizar Término da Usina sem Necessidade do Aval do Congresso (08/06/2018)

De acordo com informação da AGENCIAINFRA.COM e do jornal O Globo um grupo de trabalho, constituído por integrantes dos Ministérios de Minas e Energia e da Fazenda, do GSI  (Gabinete de Segurança Institucional da Presidência da República), da Eletrobras e da EPE (Empresa de Pesquisa Energética), seria formado brevemente, com a finalidade de em até 60 dias buscar as melhores soluções para viabilizar a retomada de Angra 3. Essas medidas não necessitarão de lei aprovada pelo Congresso.

O total da medidas inclui aumento de tarifa de Angra 3 (ainda em construção), refinanciamento das dívidas e a possibilidade de entrada de um sócio no capital da Eletronuclear, subsidiária da Eletrobras.

A pressa em se procurar formas de refinanciar a dívida  ocorre porque a empresa tem custos muito altos para pagar os financiamentos obtidos em 2010 para custear o projeto Angra 3.  A usina nunca chegou a ser terminada para gerar energia e portanto caixa para pagar a dívida, já que as obras foram paralisadas em 2015 e até o presente não retomadas.

Medida Provisória 814/17 não será votada na Câmara (22/05/2018)

Em 22/05/2018 o Presidente da Câmara, Rodrigo Maia, anunciou que a MP 814, a respeito da privatização da Eletrobras e que continha medidas relativas à conclusão de Angra 3, não será mais votada pela Câmara dos Deputados. Uma das alternativas em análise é enviar o conteúdo original da MP 814 ao Congresso por meio de um novo Projeto de Lei, porém, sem o polêmico artigo que incluía a Eletrobras no Programa Nacional de Desestatizações (PND), que encontra resistências no Congresso Nacional. A tramitação desse assunto através de projeto de lei, não resolverá os urgentes problemas que afetam a sobrevivência da Eletronuclear,  já que só terá validade depois de aprovado pelo Congresso e sancionado pela Presidência da República.

O Setor Nuclear necessita de uma solução urgente já que existe a possibilidade da Eletronuclear perder condições de seguir operando com segurança. Além disso existem os riscos implícitos na escassez de recursos para a manutenção, e é crescente a probabilidade da suspensão do fornecimento de energia nuclear ao Sistema, com graves inconvenientes para sua substituição (energia mais cara), ou mesmo risco de desabastecimento. 

Nossa Opinião sobre Medida Provisória 814/17 e Angra 3  (11/05/2018)

A Medida Provisória 814/17 tenta equacionar a urgente situação em que se encontra Angra 3. A solução parece eficiente para remediar o grave problema que apontamos para a situação da Eletronuclear que pode colocar em risco a operação da Central de Angra. Com efeito, estão sendo consumidos com pagamentos de juros recursos indispensáveis à operação das usinas Angra 1 e 2. É uma gravíssima situação que deveria merecer uma ação direta do Governo. 

A iniciativa do relator, deputado Julio Lopes (PP-RJ) é válida como também parecem válidos os argumentos que sua nota, aqui divulgada, expôs. Um dos pontos importantes é que ela fixa a eventual participação externa como de caráter minoritário que, ao mesmo tempo que não contraria preceitos constitucionais, preserva a geração nuclear como produção nacional.

Temos chamado a atenção para as normas de contabilidade do FMI, adotadas pelo Brasil para o Balanço de Pagamentos, que consideram estrangeira a produção no Brasil de energia elétrica por empresa com capital pertencente a não residentes. Este é, aliás, um aspecto importante que está, até agora, absolutamente fora da discussão sobre a privatização da Eletrobras.

Chamamos a atenção, inclusive, para o editorial da FGV Energia sobre “Privatizar ou não privatizar a Eletrobras, esta não é a questão!” o que demonstra que a dúvida não é, verdadeiramente, privatizar ou não, mas quando privatizar.  A presente ocasião seria inadequada, do ponto de vista do interesse público, por estarem os ativos desvalorizados por questões circunstanciais. Também deveria estar sendo discutida para quem privatizar, pois já estamos importando eletricidade produzida no próprio País. No caso da eletricidade nuclear, o problema parece bem encaminhado.

Ajuntando os dois problemas, para remediar uma mínima parte de nosso déficit interno, estamos criando uma fonte de déficit externo, por dezenas de anos, “importando” hidroeletricidade produzida dentro de nossas fronteiras, com investimentos pagos por nossos impostos.

MP 814/17 dá Condições de  Recuperação á  Eletronuclear e promove o Reequilíbrio Econômico da  Região  Costa Verde Fluminense       (09/05/2018 Deputado Julio Lopes)

As ações propostas em meu relatório da MP814/17, impediriam a Eletronuclear de quebrar de vez, o que tornaria a sua situação irreversível. A empresa já acumula uma dívida total em torno de R$ 11 bilhões, a deixando sem condições de sobreviver até junho.

A execução da MP 814/17, da forma proposta, possibilitará a continuidade das obras de Angra 3.
O texto estabelece meios para a adesão de um parceiro privado na conclusão da usina, através de uma licitação internacional (observa-se que sempre em ‘capital minoritários’); e ainda a correção da tarifa de Angra, considerando o início da operação comercial do empreendimento até o ano de 2026.

O preço não deverá superar o valor internacional da energia produzida por usinas nucleares que entraram em operação nos últimos dez anos e da energia a ser produzida por empreendimentos em construção.

A retomada da construção da usina daria fôlego e reequilíbrio a Eletronuclear, a permitindo reverter sua situação de inadimplência junto ao BNDES, à Caixa Economica Federal e aos demais credores.

Como há muito relato aqui, os municípios de Angra dos Reis, Parati, Mangaratiba e Rio Claro, na região Costa Verde do Rio, estão com seus investimentos sociais estagnados pela falta de cumprimento dos repasses da Eletronuclear.
Os repasses, que são uma contrapartida à exploração e construção das usinas de Angra, foram estabelecidos pelo Ministério Público para serem destinados à Saúde dos municípios. A situação dessa região hoje por falta desses recursos é desesperadora.

Com a retomada de Angra 3, mais de 9mil empregos diretos e indiretos seriam gerados e a economia da região, reestabelecida. A Eletronuclear é uma fonte de vital de contribuição em termos de arrecadação para o Estado do Rio. Lutar por sua sobrevivência é nossa obrigação e, assim, procede o meu relatório da MP814/17.

Julio Lopes é Deputado Federal pelo Rio de Janeiro e autor do relatório da MP 814/17, APROVADO ontem em Comissão Especial do Congresso.

Aprovado Relatório da MP que possibilita Retomada de Angra 3 e Privatização da Eletrobras  (Petronoticias 09/05/2018)

A Comissão Mista instalada no Senado que analisa a Medida Provisória 814/2017, que analisa  a privatização da Eletrobras e suas distribuidoras de energia provou o relatório do deputado Júlio Lopes. Conforme já noticiado o texto elaborado pelo relator também aborda a questão da retomada de Angra 3, permitindo o reajuste da tarifa de energia e também a realização de um leilão para escolher um parceiro privado para o empreendimento.

Comissão aprova Autorização para elevar Preço de Tarifa de Angra 3   (09/05/2018 Globo Economia)

O relatório final da medida provisória 814, que foi aprovado na quarta-feira (9) e trata do leilão das distribuidoras da Eletrobras, autoriza reajuste para a tarifa cobrada dos consumidores pela energia da Usina Nuclear de Angra 3.

As obras de Angra 3 foram paralisadas no final de 2015 . O projeto tem custo estimado em R$ 15 bilhões.

A Eletrobras tem argumentado que o governo e os bancos públicos não vão financiar a conclusão da obra e, para que a empresa busque os recursos necessários no mercado, será necessária uma revisão do valor da tarifa.

Sem Reajuste, Angra 3 ficará Inadimplente no Fim do Mês diz Relator da Medida Provisória 814, Julio Lopes   (Valor Econômico 03/05/2018) 

De acordo com o que declarou Julio Lopes ao  Valor Econômico,  ao deixar a audiência  da Comissão Especial da Câmara que discute  a privatização da Eletrobras,  “Se não for dada uma solução para Angra 3 ainda neste mês, o sistema entrará em default. A Eletrobras não tem  dinheiro para pagar o BNDES que será obrigado a declarar a inadimplência da Eletronuclear” .

Acredita-se que uma outra solução para Angra 3 deve ser encontrada pois há muitos problemas para que essa Medida Provisória seja aprovada na Câmara e uma solução para o problema é urgente.

Autorização para Mudança de Tarifa de Angra 3 Incluída na Medida Provisória nº 814 de 2017 
(25/04/2018: Relatório da Comissão Mista do Congresso que examina a MP)

O Relator, Deputado Julio Lopes, incluiu, nas proposições de emendas à MP n° 814 de 2017, “medidas necessárias para evitar o colapso financeiro da Eletronuclear, em razão dos problemas afetos ao financiamento da Usina de Angra 3, o que traria  graves consequências para o Grupo Eletrobras e para todo o setor elétrico”.  Fundamentalmente,  “o Ministério de Minas e Energia deverá propor ao Conselho Nacional de Política Energética – CNPE,  em até sessenta dias contados da publicação desta lei, ouvida a Empresa de Pesquisa Energética – EPE,  novo valor para o preço da energia a ser gerada pela usina nuclear Angra 3, tendo como referência o valor médio de comercialização da energia produzida por usinas nucleares recentemente comissionadas em outros países, bem como as projeções para valores médios de comercialização de energia a serem produzidas por usinas nucleares em construção em âmbito mundial.” (Art 6″. parágrafo 1°).  Esta é uma medida que pode solucionar o impasse relativo à tarifa de Angra 3 que não é suficiente para cobrir os custos previstos. Certamente as tarifas de usinas recentemente comissionadas tendem a ser uma referência realista, já as projeções  para valores médios de comercialização podem incluir “wishful thinking” de empresas  que desejam vender usinas.  

O jornal O GLOBO informou que a tarifa, que hoje está em US$ 75 por megawatt/hora, pode dobrar e atingir até US$ 150 – considerando o padrão para empreendimentos mundiais desse porte.

Modelagem de Angra 3,  Permitindo a Retomada das Obras, será Apresentada à Eletrobrás e ao MME em Breve
(Petronoticias, 19/04/ 18)

A Eletronuclear planeja assinar no ano que vem o contrato de parceria com um investidor privado para conclusão das obras de Angra 3.  O chefe do Departamento de Desenvolvimento de Novos Empreendimentos da Eletronuclear,  Marcelo Gomes da Silva, explicou que a empresa contratou uma consultoria americana ( a Alvarez & Marsal)  para desenvolver o estudo  de um modelo de negócio mais viável. Esse trabalho foi feito em conjunto com um escritório de advocacia, que realizou uma consultoria jurídica. Em função disso, chegou-se a alguns modelos que serão propostos ao mercado. A ideia então é buscar um parceiro que possa aportar capital e tecnologia para conclusão de Angra 3. 

Antes de mostrar esta modelagem aos potenciais parceiros, é preciso que ela seja validada pela Eletrobrás.  “Se houver consenso, [o documento] seria encaminhado ao Ministério de Minas e Energia para apreciação e também ao CNPE,  se for o caso” acrescentou Marcelo.

Governo trabalha em Novo Desenho para a Área Nuclear, afirma Moreira
(Valor Econômico  Brasil 17/04/2018)

O ministro de Minas e Energia, Moreira Franco, quer um novo desenho para a área nuclear do governo. O Valor Econômico informa que ele está convencido de que hoje existe uma sobreposição de estruturas. São muitos órgãos e autarquias, espalhados por vários ministérios diferentes, com funções parecidas e duplicidade de gastos: Eletronuclear, Nuclep, Indústrias Nucleares do Brasil  e estruturas subordinadas ao Comando da Marinha. O ministro considera isso “irracional”  e disse na entrevista ao Valor que “Você tem diversas empresas do governo, uma vendendo para outra, pagando impostos, produzindo, o que é um negócio despropositado” e que “Tudo isso tem que estar num canto só.” 

São citadas no artigo do Valor, além da Eletronuclear, que opera as usinas do complexo de Angra dos Reis (RJ), a Nuclep que projeta e fabrica bens de capital no setor, a INB que se dedica à mineração, ao enriquecimento do urânio e à montagem do combustível que abastece os reatores. Todas essas empresas atuam na área de energia nuclear. Também foi mencionada a Comissão Nacional de Energia Nuclear (CNEN) que pesquisa a aplicação de técnicas nucleares e regula o uso da energia no país,  e a Marinha que tem um programa nuclear próprio, com o desenvolvimento do submarino de propulsão atômica como auge. 

O redesenho do Setor Nuclear, mencionado pelo Ministro Moreira Franco, estaria a cargo de um grupo recém criado, sob coordenação do general Sérgio Etchegoyen, chefe do Gabinete de Segurança Institucional (GSI).

Câmara Federal pode Encontrar uma Saída para Retomada das Obras de Angra 3                                  (Petronoticias, 13/04/18)

Sobre a retomada de Angra 3,  o deputado federal Júlio Lopes disse que vai sugerir em seu relatório que Itaipu e a Eletronuclear  façam uma parceria na comercialização da energia da hidrelétrica binacional.  O relatório será apresentado na próxima semana e  nele deve constar a previsão de que o preço da energia vendida por Angra 3 passe por uma revisão, para refletir a média de preço internacional  cobrada pela energia nuclear. A revisão de preço da energia de Angra 3 deverá ser feita pelo Poder Executivo, segundo a proposta prevista no relatório, que será votado na comissão mista da MP e depois pelos plenários da Câmara e Senado. 

Dinheiro de Itaipu  vai Destravar Obras da Usina de Angra 3 (Gazeta do Povo Contabilidade Criativa  12/04/18)

A resposta para viabilizar a retomada da construção da usina nuclear Angra 3 pode vir da usina binacional Itaipu. O relator da medida provisória (MP) 814, deputado federal Júlio Lopes (PP-RJ), vai sugerir em seu relatório que Itaipu e Eletronuclear (duas empresas ligadas à Eletrobras que não podem ser privatizadas) façam uma parceria na comercialização da energia da hidrelétrica binacional. Com isso, a receita de Itaipu proporcionará uma solução contábil que evitará a liquidação antecipada da dívida de Angra 3 com o BNDES e com a Caixa e o destravamento das obras. 

Crise Econômico-Financeira na Geração Nuclear (E&E 98)

A situação financeira da Eletronuclear já vinha apresentando problemas, desde 2015, com a crescente transferência de responsabilidade pelo investimento na construção de Angra 3. Este conjunto inicial de eventos provocaria virtual insustentabilidade da empresa no ano de 2015. No presente o Brasil encontra-se novamente em uma encruzilhada em relação à Angra 3.

A interrupção das obras em 2015 gerou o vencimento de compromissos com os bancos financiadores em valores de 55 milhões de R$ que absorveriam cerca de 20% de sua receita, advinda da geração de Angra 1 e 2. A desestruturação do Setor Nuclear Brasileiro, considerado estratégico para a Segurança Nacional, terá graves implicações na estabilidade de atividades ligadas à defesa nacional. Também terá fortes impactos na independência e sustentabilidade de todo o complexo nuclear, do qual depende não só o abastecimento de energia da Região Sudeste, mas também a estabilidade do Sistema Elétrico Interligado.

O Ministro de Minas e Energia visita Central de Angra
(Resumo de material da Agência Brasil)

Fernando Coelho Filho, visitou dia 26/03 a Central Nuclear Almirante Álvaro Alberto (CNAAA). O ministro recebeu relatório técnico sobre a história do programa nuclear brasileiro e a situação atual, mas não deu declarações. A visita foi fechada à imprensa.

O presidente da Eletronuclear, estatal que administra e opera as usinas nucleares, Leonam dos Santos Guimarães, inteirou o ministro sobre os passos para levar à retomada de Angra 3, ressaltando a importância desse fato, inclusive para o processo de democratização do capital da Eletrobras. O projeto de lei que está em tramitação no Congresso referente à privatização da Eletrobras prevê a segregação da Eletronuclear,  junto com a Usina Binacional de Itaipu.

“Para fazer essa segregação, a Lei das Sociedades Anônimas requer que a empresa não pode ter patrimônio líquido negativo, que é o nosso caso”, ressaltou Guimarães, em entrevista à Agência Brasil. “Nós estamos nessa situação por causa do impairment (deterioração) de Angra 3, ou seja, pela projeção de prejuízos futuros de Angra 3”.

Segundo Leonam Guimarães, um item chave nesse processo é uma atualização do valor de venda do contrato de energia. Ele considera esse fator crucial para sanear o balanço da Eletronuclear para que ela possa ser, efetivamente, segregada, isto é, retirada do processo de privatização da holding Eletrobras. O “pontapé” inicial da solução do problema de Angra 3 passa por essa condição, disse.

Ministro de Minas e Energia e Representantes de Caixa e BNDES se reúnem para discutir Solução para Angra 3
(Petronotícias 20/03/2018)

Em busca de uma solução definitiva e necessária para a situação de Angra 3, o Ministro de Minas e Energia, Fernando Coelho, e o presidente da Eletronuclear, Leonam Guimarães, se reuniram em 20/03/2018 em Brasília com representantes da Caixa Econômica, do BNDES, do Tesouro Nacional e com o secretário-executivo do Ministério de Minas e Energia, Paulo Pedrosa. A pauta do encontro foi a paralisação nas obras de Angra 3 e também a questão das dívidas da Eletronuclear com os bancos.

Como se sabe, a empresa está arcando com um custo de R$ 30 milhões mensais por conta de juros de financiamentos feitos para a construção de Angra 3.  A Eletronuclear está enfrentando dificuldades para honrar os pagamentos, já que além dos valores de tarifa de energia de Angra 1 e 2 estarem obsoletos, Angra 3 ainda não está concluída (ou seja, ainda não gera retorno financeiro à companhia).

 A Continuidade de Angra 3 (E&E 98)

Mais uma vez coloca-se a questão sobre dar prosseguimento ou não a Angra 3. Tem sido lembrado que Angra 3 é importante para o futuro da energia nuclear no Brasil. Justamente porque tem essa relevância, deve-se cuidar que o arranjo institucional e financeiro, a ser encontrado, não sacrifique esse futuro.  Alguns problemas cruciais são levantados como a viabilidade econômica que tem que considerar como externos atrasos por motivos político-administrativos alheios ao controle empresarial. Além da viabilidade econômica, chama-se atenção para o aspecto estratégico do domínio da indústria nuclear e da possível obsolescência da usina em termos técnicos e econômicos que é abordada no artigo seguinte.

Desmonte do Setor Nuclear exclui Brasil do Jogo no Mercado Global  (Conexão UFRJ – Energia, Corynto Baldez)

Ao lado dos Estados Unidos e da Rússia, o Brasil faz parte do seleto grupo de nações que domina o ciclo do combustível nuclear, de modo autossuficiente, para a geração de energia elétrica. Os outros países ou têm a tecnologia ou a matéria-prima, mas não as duas juntas. Além dos três citados, somente mais oito Estados nacionais completaram o ciclo tecnológico do enriquecimento do urânio – mas estes dependem da importação do minério.

Em breve, contudo, é provável que o Brasil seja expelido do topo dessa lista e assista ao completo abandono do seu programa nuclear, que enfrenta uma dramática crise de financiamento há cerca de três anos. “Esse desmonte só interessa aos países centrais. O Brasil estava na crista da onda há seis anos e era reconhecido internacionalmente. Hoje, isso mudou completamente com a paralisia dos investimentos no setor nuclear”, afirma Aquilino Senra, professor de Engenharia Nuclear da COPPE/UFRJ.

 Atualização do Padrão Técnico e de Segurança de Angra 3  (E&E 98)

A Eletronuclear divulgou em fevereiro deste ano um estudo intitulado “Atualização do Padrão Técnico e de Segurança do Projeto de Angra 3” (finalizado em 2017), sobre as atualizações técnicas e de segurança acrescentadas ao projeto de Angra 3 com relação à segurança do empreendimento. Apesar de Angra 3 ter sido planejada nos anos 1970, ao longo do tempo, mudanças foram feitas na concepção original para incorporar modernizações tecnológicas, a experiência operacional do setor nuclear e as exigências das normas nacionais e internacionais, que foram revisadas no período.  Isto permite que Angra 3 mantenha a segurança e o desempenho adequados aos padrões internacionais atuais.  Apresenta-se na revista o sumário executivo, o Relatório Completo está disponível no site da Eletronuclear.

Agentes Envolvidos na Construção de uma Usina Nuclear
(a ser publicado na E&E 99 e incluído neste “post”)

Leonam dos Santos Guimarães, Diretor Presidente da Eletronuclear, aborda assunto importante para as discussões sobre a retomada de Angra 3 e a expansão futura do parque nuclear brasileiro que possivelmente será concretizada com parceria externa. Para aclarar a terminologia usada para descrever os potenciais modelos de negócio para usinas nucleares, apresenta, resumidamente, os termos utilizados pela indústria núcleo elétrica para descrever os vários agentes importantes no processo de implantação de uma nova usina nuclear, que são: Proprietário,  Arquiteto – Projetista (Architect – Engineer A&E), Construtor,  Fornecedor do Sistema Nuclear de Geração de Vapor,  Fornecedor do Turbo-Gerador elétrico, Operador,  Regulador e Financiador.

Os modelos de negócio para a retomada de Angra 3 

O Assistente da Diretoria Técnica da Eletronuclear,  Roberto Cardoso Travassos,  apresentou no evento WNU/ABDAN/MB “The World Nuclear Industry Today” palestra sobre as soluções que a Eletronuclear está buscando para relançar o projeto de Angra 3.  As transparências da palestra estão acessíveis no site da ABDAN.

Também concedeu entrevista ao Petronoticias “Eletronuclear apresenta ao mercado modelos de negócios para retomada de Angra 3“. A Empresa está partindo do pressuposto que será necessário o aporte de capital externo e procura equacionar os modelos para essa participação que podem servir também para próximas centrais.  Existe interesse de empresas do exterior (França, Coreia, China, e Rússia) pelo projeto e seu possível segmento. A transparência abaixo ilustra o que já foi feito e a situação atual.

Conjunto de transparências no site WNU/ABDA

Agentes Envolvidos na Construção de uma Usina Nuclear

Ensaio:

Agentes Envolvidos na Construção de uma Usina Nuclear

Leonam dos Santos Guimarães

Resumo

A retomada de Angra 3 e a expansão futura do parque nuclear brasileiro possivelmente serão concretizadas com parceria externa. Para descrever os potenciais modelos de negócio para usinas nucleares, é útil aclarar a terminologia usada, pela  indústria nucleoelétrica.  Apresentam-se, resumidamente, os termos utilizados para descrever   os vários agentes importantes no processo de implantação de uma nova usina nuclear, que são: Proprietário, Arquiteto – Projetista (Architect – Engineer A&E), Construtor, Fornecedor do Sistema Nuclear de Geração de Vapor, Fornecedor do Turbo-Gerador elétrico, Operador, Regulador e Financiador.

Palavras Chave:

Angra 3,  indústria nuclear,   geração de eletricidade , Eletronuclear,  energia nuclear, Central de Angra


1. Introdução

As discussões sobre a retomada de Angra 3 e expansão futura do parque nuclear brasileiro muitas vezes não são muito claras quando se trata da terminologia usada para descrever os potenciais modelos de negócio para usinas nucleares. Tentando preencher esta lacuna, apresentaremos aqui resumidamente os termos utilizados pela indústria nucleoelétrica para descrever os vários agentes importantes no processo de implantação de uma nova usina nuclear, que são:

  • Proprietário
  • Arquiteto – Projetista (Architect – Engineer A&E)
  • Construtor
  • Fornecedor do Sistema Nuclear de Geração de Vapor
  • Fornecedor do Turbo-Gerador elétrico
  • Operador
  • Regulador
  • Financiador

Figura 1: Central Nuclear de Krsko, Eslovênia – 1 única unidade

Esta seria uma usina nuclear (Nuclear Power Plant – NPP ou Nuclear Power Station – NPS), com uma única unidade (no caso Krsko, na Eslovênia, “gêmea” de Angra 1). Em algumas partes do mundo, o termo “bloco de energia” (Power Block) ou simplesmente “bloco” (block) é sinônimo da palavra “unidade”, ou seja, uma combinação de “Sistema Nuclear de Geração de Vapor” (Nuclear Steam Supply System – NSSS ou N3S), do qual um reator nuclear é a fonte de calor, e seu Sistema de Geração Termelétrica, centrado no turbo-gerador (Balance of Plant – BoP). Uma central nuclear é um conjunto de usinas nucleares. No mundo hoje temos centrais de uma a oito unidades (Figuras 1 e 2).

Figura 2: Central Nuclear de Kashiwazaki Kariwa, Japão – 8 unidades.

2. O Triângulo da Construção

Podemos chamar de “triângulo da construção” à tríade de organizações composta pelo proprietário (Owner) da usina nuclear, por seu Arquiteto – Projetista (Architect – Engineer – A&E) e pelo seu Construtor (Constructor).

Proprietário (Owner): Esta parte do triângulo da construção é óbvia, sendo a empresa de serviços públicos (utility) que está comprando a usina nuclear. Esta empresa tem que fornecer o terreno para localização da usina, pagar para tê-la construída, operá-la e conectá-la à rede elétrica nacional. Os proprietários de centrais nucleares podem ser empresas individuais ou grupos de empresas que atuem em conjunto, seja como sócios, seja como empresas separadas e autônomas com propriedade conjunta (em qualquer um dos acordos, distribuem-se os custos). Os proprietários geralmente tomam a decisão de que precisam de mais capacidade de geração, em primeiro lugar, e então realizam estudos para determinar qual a melhor alternativa para obter essa energia nova. Se os estudos mostram que uma usina nuclear é a melhor opção, então um processo é iniciado envolvendo outros agentes.

No caso de Angra 1 e início da construção de Angra 2, o Proprietário foi FURNAS. No caso da conclusão de Angra 2, o Proprietário foi a ELETRONUCLEAR, nascida da fusão da parte nuclear de FURNAS com a NUCLEN, empresa criada dentro da controladora NUCLEBRÁS para exercer o segundo lado do triângulo, o do Arquiteto – Projetista.

Arquiteto – Projetista (Architect – Engineer A&E): Esta é a empresa responsável pelo projeto da usina na sua totalidade. Na maioria dos casos, uma vez que um proprietário tomou a decisão de construir uma usina nuclear, ele contrata um A&E para conduzir o projeto. O A&E pode ou não ajudar o Proprietário na seleção de uma determinada tecnologia nuclear. Uma vez que o Sistema Nuclear de Geração de Vapor (Nuclear Steam Supply System – NSSS ou N3S) e outros detalhes foram especificados, o A&E projeta a usina como um todo. Isto incluirá, inevitavelmente, milhares de páginas de documentação técnica. Essa documentação corresponderá às especificações fornecidas tanto pelo fornecedor do N3S quanto pelo Proprietário para o projeto da usina em particular. O A&E precisa analisar, por exemplo, se um projeto em particular incluiria uma torre de resfriamento, ou seria o caso de usar diretamente um rio ou mesmo o mar. O trabalho do A&E está também associado ao gerenciamento da construção, terceiro lado do triângulo.

No caso de Angra 1, o A&E foi a empresa americana Gibbs & Hill. No caso de Angra 2, o A&E foi a NUCLEN. O gerenciamento da construção ficou ao cargo da NUCON, outra empresa controlada pela NUCLEBRÁS, extinta em 1988. Ambas foram sucedidas pela ELETRONUCLEAR. No caso de Angra 3, o A&E atualmente é a ELETRONUCLEAR.

Construtor: Esta é a empresa que constrói ou supervisiona a construção da usina nuclear. Normalmente, o construtor contrata dezenas de subcontratados para executar os trabalhos de lançamento de concreto, montagem de tubulações, instalação do cabeamento elétrico e de instrumentação e controle, etc. O Construtor constrói de acordo com a documentação técnica fornecida pelo A&E e age com base na paulatina disponibilidade dos componentes necessários para a instalação. Grandes problemas podem ser causados por um construtor que trabalha antes de receber a documentação final de projeto, apenas para verificar, depois que os desenhos finais chegam, que parte do trabalho foi feito de forma não conforme. Isso leva a ter que desfazer e refazer o trabalho. Em outras vezes, o próprio trabalho em si pode ter sido feito de forma errônea e isso ser identificado pelo controle de qualidade, o que leva também a desfazer e refazer o trabalho. Naturalmente, a entrega tardia de desenhos e especificações do A&E também levará a um atraso significativo.

No caso de Angra 2, e também de Angra 3, a ELETRONUCLEAR também desempenha o papel de Construtor, pois as obras civis e a montagem eletromecânica são contratadas em separado. 

3. Outros agentes importantes

Fornecedor do N3S: Esse em geral é o mais conhecido: Westinghouse – Toshiba, Framatome (ex-AREVA), GE – Hitachi, Rosatom, Mitsubishi, ATMEA, CNNC, etc. É a empresa que realmente projeta e fabrica o próprio reator nuclear e od demais componentes do Sistema Nuclear de Geração de Vapor – N3S a ele ligados. O N3S é montado dentro do edifício de contenção e tem muitas interfaces com o restante da usina. As duas interfaces mais importantes são o vapor que ele envia através de tubulações, que é utilizado para acionamento do turbo-gerador, e a água condensada que volta para o N3S para ser novamente transformada em vapor. Por mais importante que seja o N3S, seu fornecedor não é a entidade que define o projeto geral da usina, pois isso é da responsabilidade do A&E e do proprietário. Ao longo do tempo, tem havido uma tendência crescente para padronizar e multiplicar usinas de um local para o outro. Esta é a norma hoje em dia, de modo que é apropriado falar sobre um projeto particular em termos do próprio projeto do reator. No entanto, nos “velhos tempos”, o discurso geral não era de que uma usina fosse uma “Usina Westinghouse”, mas sim uma “Usina Bechtel” ou uma “Usina Stone & Webster”, para citar exemplos americanos, porque estas empresas de A&E definiam o projeto geral da usina em que um N3S e muitos outros componentes a ele integrados.

Em Angra 1 o fornecedor do N3S foi a Westinghouse. Em Angra 2 foi a Siemens – KWU. Em Angra 3 é a FRAMATOME (ex-AREVA), que adquiriu a Siemens – KWU.

Fornecedor do Turbo-Gerador: Poucos fornecedores no mundo são capazes de fabricar os turbo-geradores de grande porte associados às usinas nucleares, com potência superior a 1.000 MW. É uma lista curta, que inclui Alston, Mitsubishi, Siemens, GE, além de empresas russas e chinesas. Como cada equipamento deste tipo é feito sob encomenda, é possível combinar-se diferentes fornecedores de turbo-geradores com diferentes fornecedores de N3S.

O fornecedor do turbo-gerador de Angra 1 foi a Westinghouse e o de Angra 2 foi a Siemens. O turbo-gerador de Angra 3 também é Siemens.

Operador: Em geral, o Proprietário se confunde com o Operador. Entretanto, existem modelos modernos em que esses dois atores podem ser distintos. Por exemplo, na Espanha, as grandes empresas de geração elétrica, IBERDROLA e ENDESA, criaram empresas exclusivamente para operação de suas usinas nucleares com as quais mantêm contratos de gestão associados a transferências orçamentárias (caso da ANAV, que opera três usinas: Ascó 1 e 2 e Vandellós 2). Neste caso, o Operador tem a obrigação de entregar toda eletricidade gerada ao Proprietário, que se incumbe de sua comercialização. O Operador é uma empresa que não gera lucro e funciona com base num orçamento transferido pelo Proprietário. Note-se ainda que o Operador é o requerente das licenças nuclear e ambiental da usina, sendo responsável pela segurança operacional da mesma.

Regulador: O regulador é o órgão oficial de uma nação encarregado de garantir a segurança das usinas nucleares. Muitas palavras foram escritas sobre os reguladores, mas para o propósito desta discussão apenas diremos que as inspeções do regulador no projeto e construção de uma usina nuclear são frequentes e que ele tem autoridade para interromper os trabalhos e impor mudanças no projeto e construção. Alterações na regulamentação técnica enquanto uma usina está em construção podem contribuir com um atraso significativo, se o regulador exigir mudanças em trabalhos já concluídos.

Financiador: Obviamente, para que os agentes envolvidos na construção da usina executem as tarefas sob sua responsabilidade torna-se necessário um financiamento. Normalmente, o tomador desse financiamento é o Proprietário, que também aporta uma parcela de recursos como equity. O pagamento do serviço da dívida e da amortização do principal financiado como debt é feito com parte da receita auferida com a venda de energia, cujo preço deverá ser compatível com essa obrigação, a qual se adiciona aos custos operacionais propriamente ditos. No arranjo convencional, o Proprietário é uma única empresa elétrica (utility), que obtem o financiamento junto a instituições de crédito. Como a construção de uma usina nuclear é um empreendimento intensivo em capital e de longo prazo de maturação, novos arranjos de financiamento têm sido propostos e alguns deles efetivamente praticados.

A Tabela 1 resume a atuação dos diversos agentes para as usinas de Angra 1, Angra 2 (duas fases) e a Angra 3 na primeira fase.

Tabela 1: Agentes envolvidos na construção das usinas nucleares brasileiras:

 

ANGRA 1

ANGRA 2
(INÍCIO)

ANGRA 2
(CONCLU-SÃO)

ANGRA 3
(INÍCIO)

Proprietário

FURNAS

FURNAS

ETN*

ETN

A&E

GIBBS & HILL

NUCLEN

ETN

ETN

Construtor

FURNAS

NUCON

ETN

ETN

Fornecedor do NSSS

WESTING-HOUSE

KWU

KWU

AREVA

Fornecedor do TG

WESTING-HOUSE

SIEMENS

SIEMENS

SIEMENS

Operador

FURNAS

FURNAS

ETN

ETN

Regulador

CNEN

CNEN

CNEN / IBAMA

CNEN / IBAMA

(*) ETN: Eletrobras Eletronuclear

A Continuidade de Angra 3


Economia e Energia – E&E    Nº 98,  janeiro a março 2018

ISSN 1518-2932

A CONTINUIDADE DE ANGRA 3

Opinião:

Mais uma vez coloca-se a questão sobre dar prosseguimento ou não de Angra 3. Tem sido lembrado que Angra 3 é importante para o futuro da energia nuclear no Brasil. Uma boa contribuição para o debate foi dada pelo professor Aquilino Senra em recente artigo “Desmonte do setor nuclear exclui Brasil do jogo no mercado global”. Justamente porque Angra 3 tem essa relevância, deve-se cuidar que o arranjo institucional e financeiro, a ser encontrado, não sacrifique esse futuro.

Várias questões estão sendo (re) colocadas, a predominante é sobre sua viabilidade econômica. Como primeiro passo, é útil admitir que, aplicando juros de 7% ou 5% ao ano, não é possível pagar o custo total histórico de uma obra, com duração superior a 40 anos[1]. Por isso, as decisões sobre reiniciar as obras de Angra 2 (1996) e Angra 3 (2001 a 2007) foram tomadas baseadas em seu custo incremental. A novidade é que, desta vez, os custos de parar Angra 3, após a interrupção de 2015, já estão atropelando a Eletronuclear e terão que ser levados em conta. Análises econômicas foram realizadas para a decisão anterior de retomada. Como houve um considerável avanço na obra, é muito provável que a resposta continue positiva apesar do custo maior constatado.

Quanto às necessidades energéticas vale lembrar que Angra 2 foi terminada justo quando se configurou o “apagão” de 2001. A situação dos reservatórios nos últimos anos mostrou que estivemos muito perto de uma outra crise de abastecimento e que a energia firme de Angra é necessária. Não será talvez surpresa que Angra 3 venha, justamente, ajudar a remediar o próximo apagão.

Outra questão fundamental é o da segurança da energia nuclear no que se refere a possíveis acidentes nas usinas de geração de energia elétrica. É um assunto cuja resposta definitiva pertence ao futuro.

Depois de muita discussão sobre o acidente de Fukushima, a resposta pragmática dos países a essa questão é indicada por sua atitude frente a energia nuclear. De uma maneira esquemática, o uso para geração nuclear elétrica continua crescendo em países emergentes (China, Rússia e índia principalmente), outros (França, EUA e Reino Unido) estão retomando lentamente a construção de usinas (UK ainda não iniciou a construão), com grandes problemas econômicos que não diferem muito dos de Angra 3, e, finalmente, no grupo de países (Itália, Alemanha e Japão), cada país (nessa ordem), ou já abandonou, ou está em processo de abandonar, ou está com sérias dúvidas sobre a continuidade da geração nuclear elétrica. É interessante observar que todos esses grandes países, inclusive o último grupo (de perdedores da Segunda Guerra Mundial), não abriram mão de possuir, de compartir ou desfrutar da proteção das armas nucleares para sua defesa[2].

Outra questão importante é se Angra 3, considerando seu projeto (anos setenta) e alguns equipamentos (anos oitenta) não estaria obsoleta ou insegura. É a questão abordada no abrangente relatório “Atualização do Padrão Técnico e de Segurança do Projeto de Angra 3” divulgado pela Eletronuclear recentemente e cujo sumário está aqui publicado. O trabalho confronta as exigências técnicas e de segurança, expressa em padrões e normas adaptadas às novas exigências, com a realidade de Angra 3 e aponta as modificações realizadas para atender essas exigências que evoluíram em função da experiência mundial acumulada, incluindo os acidentes.

Quanto aos equipamentos, fundamentalmente deve-se considerar que os adquiridos são equipamentos estruturais, de muito lenta obsolescência, ou que mereceram cuidadoso esquema de manutenção, orientado pelo fabricante e ainda receberam algum tipo de atualização como é o caso do turbogerador. Outros equipamentos, como a mesa de controle e os equipamentos eletrônicos, ainda não haviam sido adquiridos e são atuais.


 Neste Número:

| É a Contabilidade, Estúpido! | Crise Econômico-Financeira na Geração Nuclear | Resumo da situação da Geração Elétrica Nuclear no Brasil em dezembro de 2017| A Continuidade de Angra 3 |Atualização do Padrão Técnico e de Segurança do Projeto de Angra | O Poder da Contabilidade|’


[1] Início das obras civis em 1984, interrompidas em 1986, reiniciadas em 2007 e novamente interrompidas em 2015, primeiros equipamentos encomendados em 1975.

[2] Nesse resumo, faltam as duas Coreias: ambas consideram, a seu modo, a energia nuclear fundamental (geração ou bombas). Nas potências nucleares, uma corrida trilionária de modernização das armas nucleares está em curso; isso responde a questão (não colocada) da importância estratégica da energia nuclear.

Ver ou Baixar E&E 98 em pdf

Neste Número:

É a Contabilidade, Estúpido! | Crise na Geração NuclearA Continuidade de Angra 3 | Atualização do Padrão Técnico e de Segurança do Projeto de Angra 3  | O Poder da Contabilidade | E&E 98 Tudo |


Crise Econômico-Financeira na Geração Nuclear

Resumo da situação da Geração Elétrica Nuclear no Brasil em dezembro de 2017

José Israel Vargas,
Carlos Feu Alvim e
Olga Mafra

Baixar em pdf

Em 13 de Novembro do ano passado as direções da Eletronuclear e da INB reuniram-se com o Presidente da Câmara, deputado Rodrigo Maia, para chamar a atenção sobre a grave situação econômico-financeira da área da geração de energia eletronuclear (1). O Diretor Presidente da Eletronuclear, Leonam Guimarães confirma que esta situação é fundamentalmente devida aos dispêndios induzidos pelo  estado em que se encontra o projeto de construção de Angra 3.

Os gastos com a interrupção de Angra 3 absorvem as tarifas geradas por  Angra 1 e 2,  já reduzidas em valor real de 14%, pela ação ANEEL. Embora os recursos gerados sejam suficientes para manter as duas usinas, em pleno funcionamento, a inadimplência das responsáveis contratuais pela construção de Angra 3 quais sejam a Eletrobras e os financiamentos dos  bancos BNDES e Caixa Econômica Federal, com a transferência dos encargos assumidos, tornou insustentável a situação da empresa.

De fato o não cumprimento pela Eletrobrás, tanto inicialmente de 20% ampliados posteriormente a 40%, dos encargos, bem como daqueles de responsabilidade dos referidos bancos, em decorrência da mencionada interrupção do projeto Angra 3, agravou-se mais ainda pelo início de cobrança pelos bancos de juros sobre os passados investimentos, atualmente em 30 milhões de reais mensais (do BNDES) e que alcançariam mensalmente 55 milhões de reais com a prevista incorporação dos pagamentos devidos à CEF.

A situação financeira da Eletronuclear já vinha apresentando problemas, desde 2015, com a crescente transferência de responsabilidade pelo investimento na construção de Angra 3. Este conjunto  inicial de eventos provocara  virtual insustentabilidade da empresa no ano de 2015. Com efeito, a declaração de “impairmen”(redução do valor de recuperação de um ativo) de 3,4 bilhões de reais reduziu a zero, naquele ano, o patrimônio líquido da Empresa. Além disso, a impossibilidade da controladora Eletrobrás de aportar, como apontado acima, recursos próprios conforme previsto em contrato tanto inicial como o posterior já tornara o empreendimento problemático. A situação do impairment  poderia ter sido, em princípio, resolvida com a repactuação da tarifa de Angra 3, persistindo, no entanto, o problema do aporte de recursos próprios cujo equacionamento estava em estudo.

Isso se tornou politicamente inviável quando as operações da Polícia Federal e Justiça Brasileira com as operações “Lava Jato” e “Pripyat” atingiram membros da alta direção da Empresa.

Foi nesse quadro que se decidiu suspender a construção de Angra 3, no entanto não motivada diretamente por essas operações, mas, pela incapacidade política de equacionar os problemas já existentes.

A paralisação da construção de Angra 3 (2) agravou a situação como esclarece o Presidente da Eletrobras,  Wilson Ferreira Jr., fazendo cessar o fluxo financeiro dos empréstimos assumidos e naturalmente, acrescentadas despesas com o adiantamento do vencimento de juros já referidos e exorbitantes na conjuntura, que seriam normalmente pagos após a conclusão do empreendimento, pela geração de recursos resultantes do funcionamento de Angra 3.

Além disto, a Empresa deve arcar com a manutenção do canteiro de obras que é uma obrigação que envolve a preservação do investimento já realizado com a construção de Angra 3 e os requerimentos de segurança das centrais em operação. Com a paralisação das obras, foram geradas obrigações vencidas com fornecedores, que atualmente alcançam 50 milhões de reais.

A crise atual envolve, em virtude dos encargos referidos, a própria produção de combustível nuclear pela empresa Indústrias Nucleares do Brasil – INB com a qual a Eletronuclear já reduziu seus compromissos de pagamento de combustíveis, a partir de outubro deste ano, face à previsível  indisponibilidade de recursos. A situação da INB ficou crítica, além disto, em virtude dos cortes lineares realizados no orçamento limitarem seus gastos anuais, afetando, inclusive, a utilização dos recursos próprios gerados pela venda de combustíveis, inclusive decorrentes de exportação.

Concretamente, embora o combustível para 2018 já esteja assegurado (3) (4), a ser mantida a atual situação, a energia elétrica de origem nuclear poderia ter seu fornecimento suspenso a partir de 2019. Este atraso pode configurar irreversível pela antecedência necessária para a fabricação do combustível.

A produção de energia nuclear é um assunto da mais alta sensibilidade internacional e não pode estar sujeita a restrições que limitem a segurança do sistema, inclusive no que concerne a segurança da população. Ressalte-se enfaticamente que problemas de fluxo de recursos nessa indústria podem provocar tragédias humanas e ambientais de consequências imprevisíveis. O Brasil corre o risco de vir a violar (ou já estar fazendo) o Protocolo da Convenção de Segurança Nuclear da qual é signatário e onde se compromete, entre outras obrigações a:

  • Assegurar que os recursos financeiros adequados estejam disponíveis para apoiar a segurança de cada instalação nuclear ao longo de sua vida;
  • Assegurar que número suficiente de pessoal qualificado esteja disponível, para todas as atividades relacionadas com segurança para cada instalação, ao longo de sua vida.

A nomeação e o afastamento de sucessivos diretores-presidentes interinos claramente não ajudou o processo de recuperação da Empresa. A clara exposição da grave situação que vem fazendo, em diversos fora, o atual diretor-presidente Leonam Guimaraes e sua recente efetivação no cargo (5) criaram as condições para que o Governo Federal assuma sua responsabilidade para a urgente solução do problema.

Não fazê-lo implica desestruturar o estratégico Setor Nuclear brasileiro resultante de mais de 60 anos de esforços, com fortes impactos na Segurança Nacional, na independência e sustentabilidade de todo o complexo nuclear do qual depende não só abastecimento de energia da Região Sudeste, mas a estabilidade do Sistema Elétrico  Interligado,  com  graves implicações na estabilidade de atividades ligadas à defesa nacional, inclusive no que diz respeito os compromissos assumidos em Acordos Internacionais, e à saúde da população brasileira.

Claramente é necessário equacionar separadamente a situação de Angra 3, já que praticamente a totalidade dos agentes envolvidos está diretamente vinculada ao Governo Federal. Isso permitiria dar continuidade a geração segura de energia nuclear através das usinas  Angra 1 e 2 com os recursos provenientes da tarifa assim auferidas.

O Setor Nuclear necessita de urgente reestruturação que o fortaleça para garantir o cumprimento das atividades de sua responsabilidade, inclusive constitucionais. A geração de energia nuclear elétrica é seu principal eixo econômico e esta reestruturação deve levar em conta este amplo papel.

Recorde-se ainda que o Setor Nuclear, em todos os países onde essa atividade é relevante, vincula-se diretamente à alta esfera do Governo Central que assume também toda responsabilidade por sua estratégia.

No Brasil, a responsabilidade pela proteção das atividades do Programa Nuclear, bem como, da Secretaria Executiva do Comitê Interministerial que cuida do assunto está concentrada no Gabinete de Segurança Institucional, na Presidência da República.

Pode-se resumir assim as medidas urgentes necessárias

  • Equacionar separadamente a situação de Angra 3 da produção de energia por Angra 1 e 2 possibilitando a utilização integral da tarifa à destinação prevista,
  • Complementar o orçamento da INB de maneira a possibilitar, pelo menos, o uso dos recursos da venda de combustível para assegurar a geração nuclear em 2019,
  • Cuidar para que sejam mantidas as condições técnicas, pessoais e financeiras para operação com mínimo risco das centrais existentes e do canteiro de obras.

Adicionalmente é necessário tomar medidas para equacionar problemas emergentes

  • Encaminhar a decisão sobre o prosseguimento da construção de Angra 3 através de decisão do Conselho Nacional de Política Energética CNPE,
  • Iniciar a reestruturação do Setor Nuclear para impedir sua deterioração administrativa e técnica e aproveitar suas potencialidades e oportunidades comerciais, facilitando a participação do setor privado e a operação dos organismos do Estado nas tarefas de sua responsabilidade.
  • Reunir os elementos par a formulação de uma política nuclear de longo prazo, coerente com a importância estratégica dos assuntos do Setor.

Bibliografia

  1. Petronotícias. A grave crise da Eletronuclear e INB é levada ao Presidente da Câmara que promete ajuda para uma solução . Petronotícias. [Online] 13 de novembro de 2017. https://petronoticias.com.br/archives/105361 .
  2. Pamplona, Nicola. Parada, Angra 3 dá prejuízo adicional de R$ 30 milhões por mês à Eletrobras. UOl Folha de São Paulo. [Online] 14 de novembro de 2017. http://www1.folha.uol.com.br/mercado/2017/11/1935328-parada-angra-3-da-prejuizo-adicional-de-r-30-milhoes-por-mes-a-eletrobras.shtml .
  3. Petronoticias. INB recebe aporte de R$ 190 milhões que garante o abastecimento de combustível para Angra e Angra 2. Petronoticias. [Online] 04 de janeiro de 2018. https://petronoticias.com.br/archives/107162 .
  4. Luna, Denise. Governo faz aporte de R$ 190 mi para garantir abastecimento de usinas de Angra em 2018. Estadão. [Online] 04 de janeiro de 2018. http://economia.estadao.com.br/noticias/geral,governo-faz-aporte-de-r-190-mi-para-garantir-abastecimento-de-usinas-de-angra-em-2018,70002138572 .
  5. Petronotícias. Governo acaba a interinicade e confirma Leonam Guimarães como presidente da Eletronuclear. Petronoticias. [Online] dezembro de 20 de 2017. https://petronoticias.com.br/archives/106678 .

 

 

TNP X TPAN


Economia e Energia – E&E   
Nº 97, outubro a dezembro  2017
ISSN 1518-2932

Nota Final da Redação:

 TNP X TPAN

O artigo sobre o Tratado de Proibição de Armas Nucleares – TPAN mostrou que os compromissos nele assumidos pelos Estados Membros são superiores aos assumidos pelos países ditos “Não Nucleares” no Tratado de Não Proliferação – TNP. O compromisso de acordo de salvaguardas com a AIEA é equivalente ao do TNP.

A vantagem do TNP sobre o TPAN para os países não nucleares é de que existe no TNP um compromisso com o desarmamento expresso no Artigo VI:

“Each of the Parties to the Treaty undertakes to pursue negotiations in good faith on effective measures relating to cessation of the nuclear arms race at an early date and to nuclear disarmament, and on a treaty on general and complete disarmament under strict and effective international control.”

Na situação atual, anterior à vigência do TPAN, é praticamente o consenso que muito pouco foi feito no sentido do desarmamento e em “um tratado do geral e completo desarmamento sob o estrito e efetivo controle internacional”.

Algo foi feito no sentido de conter a corrida armamentista nuclear, como a proibição ou interrupção de testes pelos países nuclearmente armados do TNP. Tratados do tipo START, entre as duas maiores potências, chegaram a limitar o arsenal.

Nada impediu as explosões “demonstrativas” dos novos candidatos ao clube dos nuclearmente armados. Hoje, a realidade é o Programa de Modernização das Armas Nucleares lançado pelo Presidente Obama, com um custo estimado de 1 trilhão de dólares[1] e que o Presidente Trump “twitou”[2] já ter feito. Bravatas à parte, existe um programa nos EUA de 400 bilhões de dólares para os próximos dez anos e 1,2 trilhão nos próximos 30 anos.

Sem exibir um programa grandioso e explícito como o americano, a Rússia, ao mesmo tempo que denuncia os avanços americanos como violação do tratado bilateral firmados, vem também trabalhando na modernização de seu arsenal[3]. A notícia inquietante, em ambos os países, é que boa parte dos esforços estão concentrados em armas táticas (de pequeno porte) apropriadas justamente a ações “limitadas” e possivelmente dirigidas contra países não nuclearmente armados ou até contra organizações atuando em territórios de outros países.

A evolução desse quadro pode levar a um resultado que talvez seja o temor não explícito do comunicado conjunto liderado pela missão norte-americana na ONU, por ocasião da discussão do TPAN que vê nele uma ameaça à “política de dissuasão nuclear, que tem sido essencial para manter a paz no mundo”:

O suposto resultado seria que, considerando que os compromissos do TPAN são equivalentes ou superiores aos do TNP, os países não nucleares do TNP talvez optem, no futuro, a ficar só no TPAN. O mundo poderia tender para países direta ou indiretamente com amas nucleares, signatários do TNP e os não nuclearmente armados, signatários do TPAN. Ou seja, o TPAN reduziria os obstáculos de abandonar o TNP. Essa possibilidade poderia funcionar, no futuro, como instrumento para forçar os nuclearmente armados a progredirem na realização do Artigo VI do TNP.

[1] https://www.defensenews.com/breaking-news/2017/10/31/americas-nuclear-weapons-will-cost-12-trillion-over-the-next-30-years/

[2] https://www.vox.com/world/2017/8/9/16118242/trump-nuclear-weapons-tweets-modernization

[3] https://thebulletin.org/2017/march/russian-nuclear-forces-201710568

O Tratado de Proibição de Armas Nucleares pode ser prejudicial ao Brasil?

O Tratado de Proibição de Armas Nucleares que o Brasil Assinou obriga a aderir ao Protocolo Adicional ao Acordo de Salvaguardas?

Carlos Feu Alvim

Sobre a notícia “Temer entregou na ONU nossa tecnologia nuclear!”[1] escrito por Fernando Brito veiculada pelo Site “Conversa Afiada” deve-se assinalar que houve um engano já parcialmente corrigido pelo autor. O Brasil não assinou o Protocolo Adicional ao Acordo de Salvaguardas com a AIEA  como reconhece o próprio autor[2] . Teria assinado o Tratado de Proibição de Armas Nucleares que o induziria a assinar o citado Protocolo . Aborda-se aqui a questão:  O Tratado assinado cria alguma obrigação do Brasil aderir ao Protocolo Adicional?.

O Brasil assinou, através de ato do seu Presidente da República, em 20/09/2017o “Tratado de Proibição de Armas Atômicas[3] aprovado pela Assembleia Geral da ONU em 07 de Julho de 2017. O Tratado foi aprovado por 122 países [4] como um voto em contra (Holanda) e uma abstenção. Os países armados ou que compartilham armas não votaram, além de de outros países entre o quais estão praticamente toda a Europa e todos os países da OTAN.

Cinquenta países[5], juntamente com o Brasil através do Presidente Temer, aderiram ao Tratado em 20/09/2017 na ONU. Assinaram o documento vários países da América Latina entre os quais devem ser destacados Brasil, Argentina e México que utilizam comercialmente a energia elétrica nuclear. Destaque entre os países signatários a África do Sul, que já construiu armas nucleares e as desmontou, além da Indonésia e Tailândia. Três países já depositaram simultaneamente a ratificação (Guiana, Santa Sé e Tailândia).

O Tratado em seu Artigo 1 proíbe amplamente atividades relacionadas com o desenvolvimento, teste, produção, fabricação, aquisição, posse, armazenamento de armas ou explosivos nucleares.

“Article 1

Prohibitions

  1. Each State Party undertakes never under any circumstances to:

(a)      Develop, test, produce, manufacture, otherwise acquire, possess or stockpile nuclear weapons or other nuclear explosive devices;

(b)      Transfer to any recipient whatsoever nuclear weapons or other nuclear explosive devices or control over such weapons or explosive devices directly or indirectly;

(c)      Receive the transfer of or control over nuclear weapons or other nuclear explosive devices directly or indirectly;

(d)      Use or threaten to use nuclear weapons or other nuclear explosive devices;

(e)      Assist, encourage or induce, in any way, anyone to engage in any activity prohibited to a State Party under this Treaty;

(f)       Seek or receive any assistance, in any way, from anyone to engage in any activity prohibited to a State Party under this Treaty;

(g)      Allow any stationing, installation or deployment of any nuclear weapons or other nuclear explosive devices in its territory or at any place under its jurisdiction or control.”

Do ponto de vista moral, o tratado é altamente positivo já que consagra, por uma grande maioria de países, o banimento de armas nucleares. Do ponto de vista prático é mais uma iniciativa de desarmar os desarmados já que nenhum país que possui ou compartilha armas nucleares ou é protegido pelos chamados guarda-chuvas nucleares aprovou ou assinou e/ou ratificou o Tratado. Além disto, na lista de maiores economias, só Brasil e Indonésia aderiram ao tratado. Mesmo a Austrália, normalmente incluída nos “anjos brancos” da não proliferação votou a favor do Tratado.

O lado B da história seria que o Tratado impõe aos seus signatários obrigações. As que mais preocupam, no caso de Brasil e Argentina, são as relacionadas ao Acordo de Salvaguardas.

A preocupação é pertinente porque a assinatura do Protocolo pode prejudicar as atividades do programa do submarino nuclear que não é considerada uma arma nuclear mas que encerra uma aplicação militar (da propulsão que nuclear não é prescrita). Com efeito o submarino nuclear não é uma arma de destruição em massa e, no caso brasileiro, não seria provido de explosivos nucleares aos quais o Brasil renunciou. Note-se que o presente acordo de salvaguardas não exclui o submarino e seu material da aplicação de salvaguardas , mas oferece proteções em sua aplicação.

As inspeções do Protocolo Adicional podem ser bastante intrusivas e o Brasil, dentro de sua Política de Defesa, renunciou a tratar qualquer medida adicional na área de não proliferação até que os países armados descem sinal efetivo de cumprirem suas declaradas intensões de caminhar no sentido do desarmamento.

Entre as obrigações no âmbito da salvaguardas estão as indicadas no Artigo 3:

“Article 3

Safeguards

  1. Each State Party to which Article 4, paragraph 1 or 2, does not apply shall, at a minimum, maintain its International Atomic Energy Agency safeguards obligations in force at the time of entry into force of this Treaty, without prejudice to any additional relevant instruments that it may adopt in the future.
  2. Each State Party to which Article 4, paragraph 1 or 2, does not apply that has not yet done so shall conclude with the International Atomic Energy Agency and bring into force a comprehensive safeguards agreement (INFCIRC/153 (Corrected)). Negotiation of such agreement shall commence within 180 days from the entry into force of this Treaty for that State Party. The agreement shall enter into force no later than 18 months from the entry into force of this Treaty for that State Party. Each State Party shall thereafter maintain such obligations, without prejudice to any additional relevant instruments that it may adopt in the future.”

O Artigo 4 trata de casos especiais de países que tiveram armas nucleares (parágrafo 2, caso da África do Sul) e os que possuem armas nucleares. O Brasil e Argentina (que não se enquadram neste artigo mas no Artigo 2), já têm um acordo de salvaguardas abrangentes com a AIEA que inclui, além dos dois países, a AIEA e ABACC. Esse acordo, embora inspirado na INFCIRC/153[6], é de diferente redação. Disto deve ter originado a afirmação de que o Brasil aderira ao Protocolo Adicional como consequência da obrigação de aderir a um Acordo Abrangente. As salvaguardas do Acordo de Salvaguardas que rege as salvaguardas nucleares de Brasil-Argentina são perfeitamente compatíveis com os da INFCIRC 153 como reconhece a própria AIEA e a comunidade internacional,

O Brasil e Argentina já tem um Acordo de Salvaguardas do tipo abrangente que submete todas as instalações e materiais à inspeções da AIEA e da ABACC que a agência bilateral entre os dois países. Esta redação não inclui o chamado o Protocolo Adiciona aos acordos de salvaguardas (INFCIRC/540). A mera menção do INFCIR 153 não implica na assinatura do Protocolo Adicional  e mesmo sua posterior correção.

A rigor, a única implicação encontrada para nossos acordos de salvaguardas é que tanto os países que desistiram de suas armas nucleares como os países que as possuem e que vierem a aderir ao Tratado devem assinar com a AIEA um Acordo de Salvaguardas satisfazendo as condições expressas no Artigo 4, parágrafo 1 e 2:

Artigo 4, parágrafo 1: The competent international authority shall report to the States Parties. Such a State Party shall conclude a safeguards agreement with the International Atomic Energy Agency sufficient to provide credible assurance of the non-diversion of declared nuclear material from peaceful nuclear activities and of the absence of undeclared nuclear material or activities in that State Party as a whole.

Esta é a linguagem usada para acordos que incluem as disposições do Protocolo Adicional. Isso poderia induzir a que todos os países deveriam se enquadrar neste modelo. Não parece, entretanto, nenhuma vinculação direta com o caso de nossos países que têm, ademais, uma proteção adicional que são as inspeções cruzadas entre Argentina e Brasil que vem sendo considerada, como o fez, o Nuclear Suppliers Group – NSG como sucedâneo (ao menos provisório) a assinatura do Protocolo Adicional.

Como conclusão, não se pode dizer que o Tratado Proibição de Armas Nucleares obrigue o País a aderir ao Protocolo Adicional. Ele, no entanto, fortalece a noção que o modelo INFCIRC 153 + 540 seja o padrão de Acordo de Salvaguardas desejado pela AIEA. No caso do presente Tratado se,  por algum acontecimento não esperado, os países armados aderissem ao Tratado de Proibição das Armas Nucleares e, por consequência, ao Protocolo Adicional, o Brasil certamente não teria dificuldade de também aderir a ele porque haveria cessado o motivo de negar sua adesão.

[1] Tijolaçõ http://www.tijolaco.com.br/blog/o-que-temer-entregou-na-onu/

[2] Conversa Afiada  https://www.conversaafiada.com.br/mundo/temer-entregou-na-onu-nossa-tecnologia-nuclear

[3] Treaty on the Prohibition of Nuclear Weapons http://undocs.org/A/CONF.229/2017/8

[4] Vote name https://s3.amazonaws.com/unoda-web/wp-content/uploads/2017/07/A.Conf_.229.2017.L.3.Rev_.1.pdf

[5] Signature/ratification status of the Treaty on the Prohibition of Nuclear Weapons http://www.icanw.org/status-of-the-treaty-on-the-prohibition-of-nuclear-weapons/

[6] THE STRUCTURE AND CONTENT OF AGREEMENTS BETWEEN THE AGENCY AND STATES REQUIRED IN CONNECTION WITH THE TREATY ON THE NON-PROLIFERATION OF NUCLEAR WEAPONS

https://www.iaea.org/sites/default/files/publications/documents/infcircs/1972/infcirc153.pdf

Tango X Samba

Carlos Feu Alvim

Por 11 anos eu participei da direção da ABACC alternando com meus colegas argentinos como Secretário e Secretário Adjunto dessa Agência que muito contribui para estabelecer confiança na área nuclear entre o Brasil e Argentina e da Comunidade Internacional em relação a nossos dois países.

Meu interesse anterior pelo país irmão me fez firmar um conceito, comprovado nos últimos anos, de que os argentinos têm nacionalmente um comportamento exagerado que propicia mudanças radicais cuja face mais visível é a política, mas que também se verifica em muitos outros aspectos do seu temperamento. Eu brincava com eles que enquanto eles dançavam o tango e iam e voltavam de um lado ao outro o salão, nós dançávamos samba e fazíamos nossa agitação sem grandes mudanças de rumo.

Outra provocação que costumava fazer aos argentinos mais próximos era de que, no nuclear, nós havíamos feito as escolhas certas no tipo de reator (PWR) e no processo de enriquecimento (ultracentrifugação) e eles as “erradas” do reator PHWR e da difusão gasosa para o enriquecimento.

Ainda durante a elaboração dos estudos sobre a Política Nuclear para a SAE/PR tive a oportunidade de ler um interessante trabalho do colega argentino Roberto Ornstein, sobre o programa nuclear argentino que havia sempre se concentrado em uma preocupação básica: “Alcançar a tecnologia própria de seu programa nuclear (evitar chaves na mão)”.

Na área de reatores de pesquisa, optaram pelo desenvolvimento próprio, adaptando tecnologias existentes, e construindo os próprios reatores, conseguindo exportá-los para Peru, Argélia, Egito. e ultimamente, o da Austrália cujo projeto está sendo adaptado para nosso Reator Multipropósito.

Na área de reatores de potência, os argentinos escolheram a “linha errada” mas construíram três usinas sendo que nas de Atucha (1 e 2) participaram ativamente na concepção do projeto e na resolução de seus problemas. Há décadas vêm, persistentemente, desenvolvendo o pequeno reator CAREN da nova geração, PWR com segurança intrínseca e dentro de conceito de reatores modulares que está adquirindo força no mundo. O reator está em construção.

Enquanto isso, ao mesmo tempo que afirmávamos nosso direito a explosões pacíficas com tecnologia própria decidimos importar nossos reatores de pesquisa praticamente chave na mão. Abandonamos o projeto do reator água pesada urânio natural do Grupo do Tório para comprar, chave na mão, o reator da “linha certa” da Westinghouse. Assinamos um bilionário acordo com a Alemanha envolvendo a criação da estatal Nuclebras atuando da prospecção mineral à construção e posteriormente dividimos a Nuclebras. Planejamos construir 8 reatores no Programa com a Alemanha e interrompemos por muitos anos a construção do primeiro (Angra 2), recomeçamos o segundo (Angra 3) e recentemente o paralisamos. As atividades de enriquecimento inicialmente dirigidas para a importação de tecnologia (jet-nozzle) foram abandonadas e investimos (corretamente) no processo desenvolvido internamente de ultracentrifugação. A construção do submarino nuclear que teve progressos nos anos oitenta foi colocada em “banho maria” nos anos noventa e, na última década, retomada com a cooperação, na parte convencional, dos franceses. Foram criados competentes institutos de pesquisas nucleares, com um número expressivo de mestres e doutores, com boa formação profissional, e razoavelmente bem equipados, mas poucos de suas atividades estão atualmente ligadas ao desenvolvimento da energia nuclear. Empresas privadas que se aventuraram à participação em projetos nucleares descontinuaram suas atividades na área por falta de constância nos pedidos.

Foi só recentemente, em uma prévia deste trabalho apresentado no SIEN 2016 e fazendo uma revisão do estudo que fizemos para SAE/PR sobre Política Nuclear, é que me dei conta que na questão nuclear, nós brasileiros é que dançamos tango.

________________________

P.S.: Não obstante a trajetória oscilante, o setor nuclear ainda se destaca no Brasil, ao lado dos setores de exploração de petróleo submarino e do aeronáutico, entre os de maior sucesso na área tecnocientífica industrial. Isto se deu quando se uniram esforços em uma direção e se persistiu nela.

ApresentaçãoPorque é Necessária uma Política Nuclear |
O que é Estratégico na Energia Nuclear | Tango X Samba |

O que é Estratégico na Energia Nuclear


Todas as grandes economias mundiais consideram a energia nuclear estratégica. Defesa e geração de energia são os principais determinantes dessa classificação.

A Tabela 1 resume a situação das dez maiores economias em 2013 (em PIB medido pela paridade de poder de compra – PPC) mais Coreia e Argentina.

Tabela 1: Energia Nuclear nos Maiores Países e na amostra estudada (destacado em amarelo)

Tabela 1

Na Tabela 1, pode-se observar que, entre 2013 e 2015, portanto em apenas dois anos, importantes mudanças ocorreram na ordenação dos países em termos econômicos. A China superou os EUA e a Índia o Japão assumindo os dois membros do BRICS, respectivamente o primeiro e o terceiro lugares. Na Tabela 1 estão destacados os países considerados mais relevantes para os estudos anteriormente mencionados sobre a política nuclear.

A comparação da situação dos diversos países mostra claramente que as grandes economias consideram, de modo geral, a energia nuclear também no enfoque de defesa. Por outro lado, possuem ou possuíam domínio sobre o ciclo de combustível e a grande maioria se ocupa da fabricação de reatores. A Argentina, como vizinho mais próximo com desenvolvimento nuclear, foi também incluída na Tabela 1, embora não tivesse seu setor nuclear analisado no estudo realizado.

O domínio tecnológico e industrial de uma área estratégica é fonte de poder e a atitude dos países que detêm esse poder é, naturalmente, negá-lo aos demais. Por essa razão, a energia nuclear é a área de atuação humana onde mais organizações existem para, na prática, limitar o acesso a ela e dificultar ou dissuadir os países de dominar seu uso e suas técnicas. Faz parte da dissuasão praticada pelos países centrais, convencer os outros países a considerar a energia nuclear não estratégica para eles.

Se não há muita dúvida sobre a natureza estratégica da energia nuclear, parece válido perguntar se tudo a ela relacionado tem a mesma importância neste aspecto. Nisto deve-se lançar mão do que é considerado estratégico pelas duas principais organizações internacionais que se ocupam da não-proliferação: A AIEA (Agência Internacional de Energia Atômica) que administra a aplicação das Salvaguardas Nucleares e o NSG (Nuclear Suppliers Group) que controla o comércio de bens e serviços nessa área sensível.

Do lado da AIEA, deve-se considerar duas etapas: a das salvaguardas tradicionais e as resultantes da aplicação do Protocolo Adicional ao qual Brasil e Argentina não aderiram. O NSG, por sua vez, cria empecilhos para exportações considerando uma trigger list de tecnologias e equipamentos de uso nas etapas críticas do ciclo do combustível nuclear (enriquecimento e reprocessamento) e as de uso dual.

A Tabela 2, organizada por etapa do ciclo, procura destacar os controles da AIEA nas salvaguardas tradicionais (em vermelho) que contabilizam o material nuclear da purificação até o depósito definitivo.

O vermelho sublinhado corresponde às etapas do ciclo mais críticas de enriquecimento e reprocessamento. O mecanismo de salvaguardas fixa-se no urânio enriquecido, principalmente no altamente enriquecido, e no Plutônio que são considerados de uso direto para produção de um artefato nuclear. O processo de verificação da AIEA deixa de fora as operações de mineração e purificação, por isso começa a contabilidade dos materiais nucleares a partir do urânio nuclearmente puro. Também não há verificação prevista para radioisótopos não fissionáveis.

As salvaguardas tradicionais parecem se basear na suposição de que os países periféricos estariam sempre importando reatores e combustível e bastaria acompanhar sua operação e uso. Com efeito, reatores ditos de pesquisa foram utilizados para gerar plutônio e fabricar bombas. Mais recentemente, a proliferação se concentrou no enriquecimento com desenvolvimento próprio o que levou um maior cuidado com as fábricas de centrífugas e o controle da construção de reatores.

Nenhum sistema de controle internacional se ocupa de salvaguardar radioisótopos tanto os resultantes da fissão como os provenientes de outras reações nucleares. Isso é uma forte indicação de que não se trata de material estratégico mesmo quando se considera a possibilidade das chamadas “bombas sujas” onde radioisótopos seriam espalhados em uma explosão convencional.

A construção de reatores não se enquadra nas áreas de controle específico da AIEA exceto no que concerne ao acompanhamento de detalhes da construção que permitam aplicar as salvaguardas sobre o material e sobre a instalação quando concluídas e em operação. As definições daquela agência para salvaguardas apontam como estratégica a operação da usina e não sua construção.

O Protocolo Adicional, que a AIEA procura implementar em todos os países, introduziu a necessidade de controlar não apenas as instalações e materiais declarados, mas buscar localizar possíveis instalações e materiais não declarados. Baseia-se, como é natural, nos casos surgidos de proliferação, quase todos em instalações de enriquecimento desenvolvidas nos próprios países como Coreia do Norte e Irã e não pelo uso de equipamentos e material importado. Isso levou também à necessidade de algum controle qualitativo das atividades antes do ponto inicial da aplicação de salvaguardas tradicionais (urânio nuclearmente puro). Existem também controles sobre materiais e equipamentos do NSG nas áreas assinaladas na tabela e outras de uso dual. Ter restrições de compra é, ao mesmo tempo, uma limitação ao desenvolvimento tecnológico imediato e, por outro lado, um estímulo a outros países a desenvolver tecnologias críticas o que pode, paradoxalmente, favorecer sua proliferação.

Tabela 2: Salvaguardas e Assuntos Estratégicos

Convenções de cor:
Vermelho: Controle AIEA Salvaguardas Normais
Vermelho Sublinhado: Principal Objeto das Salvaguardas
Laranja (Controle NSG ou Protocolo Adicional)

No Brasil, Nuclear é Estratégico?

Um indicador importante do caráter estratégico ou não de um assunto para o país é o nível em que ele é tratado na estrutura governamental. A Comissão Nacional de Energia Nuclear – CNEN, criada junto à Presidência da República há 60 anos, tinha nisso um indicador da importância da área nuclear na época. Na fase atual, ela está relegada a uma posição secundária, mas, mais do que isso, perdeu a capacidade de coordenação política que desfrutou mesmo em épocas onde sua posição no organograma não indicava tanta relevância.

O assunto nuclear tem variado de prioridade ao longo dos diversos governos e a proximidade com o centro de poder continua sendo uma indicação importante de que seu papel é efetivamente estratégico.

No Brasil, o governo que melhor percebeu a energia nuclear como estratégica foi o do General Geisel. Nele, o Presidente se ocupou pessoalmente da área e elegeu duas prioridades: dominar o ciclo de combustível e participar da indústria de geração de eletricidade nuclear. A eleição de prioridades claras na área já configura uma Política Nacional.

Opção idêntica foi feita por EUA, China, Rússia, França, Inglaterra, Japão e Coreia do Sul, países que estudamos e que são responsáveis por cerca de 3/4 (75%) da potência instalada e em construção. Poderíamos acrescentar nesta lista Canadá, Índia, Argentina e até a Alemanha que escolheram as mesmas prioridades.

A Lei 4.118 de 1962 que organizou o Setor Nuclear já faz referência a uma Política Nuclear que nunca chegou a ser explicitada. Igualmente temos um Sistema de Proteção e um Conselho de Desenvolvimento do Programa Nuclear, mas não existe um programa explícito. Seria desejável, a exemplo do que se organizou para a Defesa, contar com uma Política, uma Estratégia e um Programa Nuclear. A falta da definição da Política parece ser a principal lacuna.

O Brasil teve, ao que se sabe, um único Programa Nuclear explícito, o assinado pelo Presidente Geisel que se baseava na cooperação com a Alemanha. O Programa buscava principalmente as prioridades acima assinaladas: autonomia no ciclo de combustível e a capacidade de fabricar reatores. Isso implicava em conquistar e manter o domínio tecnológico e industrial do Setor. A estratégia adotada seria obter essa condição através da cooperação externa e para isso o País aceitou as mais duras salvaguardas já aplicadas na área nuclear onde, equipamentos, materiais e tecnologia relevante estariam sob salvaguardas da AIEA sob um acordo específico entre a Agência e os países.

Compunham o programa 8 novos reatores. A transferência de tecnologia e a responsabilidade pela construção seriam repassadas paulatinamente da KWU para empresas binacionais brasileiro estatais – privadas alemãs. Na área de combustíveis, foi instalada uma fábrica em Resende (fabricação e montagem de combustíveis). O enriquecimento seria pelo método jet nozzle, o qual, embora testado no nível laboratorial e de demonstração, foi abandonado por ter surgido opção autóctone e menor consumo energético. Quanto ao reprocessamento, nada foi feito.

O grande passo dado foi a descoberta das reservas de urânio atuais sob o comando do geólogo John Forman. Da área da construção de reatores sobrou a fábrica de elementos pesados NUCLEP e a participação de empresas nacionais na montagem de Angra 2, sob a supervisão da NUCLEN / Furnas que se reuniram na Eletronuclear.

No mesmo Governo Geisel, foi buscada uma estratégia alternativa para atingir o domínio do ciclo de combustível: foi organizado o “Programa Autônomo”[1] que buscava o objetivo da Política através de tecnologia própria e sem as limitações das salvaguardas. As etapas de purificação, conversão, enriquecimento por ultracentrifugação, reconversão e fabricação do elemento combustível foram desenvolvidas em uma cooperação que envolveu principalmente o IPEN/CNEN (liderança de Rex Nazaré) com a Marinha (liderança Othon Pinheiro da Silva). Ainda na parte de reatores, foi construída uma montagem crítica (reator com potência zero) IPEN/MB 01. Ainda dentro do Programa Autônomo foi também obtido o urânio metálico e desenvolvido grafite com pureza nuclear. Na parte que visava a construção dos submarinos, vários progressos foram realizados.

Em todos os países cuja organização nuclear foi analisada, existe uma forte participação estatal na política e estratégia do setor. Alguns escolheram manter sob o Estado o controle completo do setor. São os casos óbvios de países onde a atividade teve início sob o regime comunista, como Rússia e China, mas também países de economia mais liberal como notadamente Coreia do Sul e França. Outros países optaram por uma estreita relação entre suas indústrias e governo, com planejamento e financiamento estatal como os EUA e Japão.

Concluindo, a participação do Estado nas atividades nucleares resulta de sua natureza estratégica. A discussão dos limites dessa participação deve, pois, começar por definir o que, no Setor Nuclear, tem uma importância estratégica que indica a necessidade da participação do Estado. Como foi assinalado no item anterior, uma boa indicação dos assuntos estratégicos são os controles existentes na AIEA e no NSG mostrados na Tabela 2.

Uma das definições que se espera da Política Nuclear é a sobre a participação do Estado e da iniciativa privada no setor. Um bom princípio é dar preferência à ação privada onde a atividade for considerada menos estratégica, visando alcançar maior dinamismo nas atividades nucleares.

Dentro desse princípio, pode-se localizar na Tabela 2 como não sujeito a controles e salvaguardas tradicionais as etapas de mineração e purificação do urânio, uso de radioisótopos, e construção de reatores.

Na situação atual, as atividades de mineração e purificação de urânio estão sob o monopólio estatal assim como as com radioisótopos de vida longa, já que os de vida curta já foram dele excluídas. Também faz parte do monopólio a construção e operação de reatores.

Na mineração e purificação, o controle do Estado, deveria ser feito a partir do urânio com pureza nuclear. A legislação parece permitir que a empresa estatal (no caso a Indústrias Nucleares Brasileiras – INB) compre os serviços de extração e purificação, reservando-se à empresa a comercialização do urânio e, muito provavelmente, alguma supervisão dessas etapas, mas isso não foi testado na prática.

Na manipulação de radioisótopos, coerentemente com a análise realizada, o monopólio já foi rompido para a produção e manipulação de isótopos de curta duração. Ele não faz sentido para nenhum radioisótopo de longa duração (como o Cobalto 60) salvo os fissionáveis (U 233, Pu 239, e poucos outros). Os produtos de fissão (como Césio 137 e Molibdênio 99 e seu “filho” Tc 99) não são estratégicos e sua manipulação apenas deve estar sujeita a rigoroso controle radiológico de órgãos governamentais.

Os radioisótopos produtos de fissão, normalmente resultantes da partição de átomos de Urânio 235, são gerados com o uso de reatores de pesquisa ou potência. No Brasil, seu manuseio faz parte do monopólio, mas, não se trata de um produto estratégico do ponto de vista nuclear e dos controles de proliferação. Já sua separação do urânio e do plutônio formado é estratégica porque faz parte do reprocessamento. A partir de sua separação não faz sentido a atuação ser monopólio do Estado. A imensa dificuldade de manipular e distribuir estes produtos em todo território nacional em organizações de administração direta indicam a inconveniência de colocar a responsabilidade dessa produção em organizações do Estado

A dependência externa quanto ao fornecimento de radioisótopos medicinais deve ser considerada estratégica por razões econômicas e de segurança de abastecimento; daí a importância da construção do Reator Multipropósito planejado. Só a construção do reator é estratégica do ponto de vista nuclear; a manipulação e a distribuição são estratégicas por questões de saúde e assim como outros medicamentos críticos, mas, isso nada tem a ver com os propósitos da legislação que cuida do nuclear.

Outra área aberta à participação privada, mas onde a supervisão governamental é fundamental, é a de construção de reatores. Um obstáculo novo nas pretensões de independência é que a atividade de construir reatores de potência tornou-se multinacional. Estão ocorrendo associações consideradas, há algum tempo, improváveis, como a de França e China na construção de uma central nuclear no Reino Unido.

Nesse segmento, já existe no Brasil a possibilidade da empresa estatal, a Eletronuclear, supervisionar a construção de uma usina como aconteceu com Angra 1 (chave na mão) e Angra 2 (esta com maior participação da estatal). O processo de construção e montagem já está aberto para a participação de empresas estrangeiras e nacionais. O que a política implícita “Geisel” buscava na área de construção de reatores era uma participação nacional nessa indústria e isso continua sendo a política dos países de nuclearização mais tardia como Coreia do Sul, China, Índia e nossa vizinha Argentina.

Na legislação atual, a distribuição nas responsabilidades no consórcio de fabricação e montagem dos reatores já permite alternativas que estão sendo estudadas pela própria Eletronuclear. Certamente o impasse atual que se chegou em relação a Angra 3 abre espaço para aprofundar essas alternativas que podem requerer algum ajuste na legislação.

É necessário pensar melhor, no entanto, se seria conveniente privatizar a operação das usinas permitindo que empresas estrangeiras (inclusive estatais) o façam. Para que se tenha uma melhor ideia dos problemas envolvidos, basta lembrar que entre as empresas certamente credenciadas para operar as centrais encontram-se as estatais russas e chinesas. Talvez porque os fantasmas da guerra fria ainda não desapareceram completamente, ainda é difícil para muitos brasileiros admitirem tranquilamente que uma empresa russa ou chinesa assuma, para ser mais concreto, a operação das usinas de Angra. Com menor intensidade, pode-se pensar que igualmente haveria resistência para a hipótese de se entregar a operação de Angra para uma empresa, digamos, americana ou japonesa.

Algumas perguntas adicionais teriam que ser respondidas antes de se pensar na desestatização da operação das usinas: Quem assumiria os riscos regulatórios que poderiam inviabilizar o empreendimento por restrições ambientais? De quem seria a responsabilidade com os rejeitos? Que esquema de segurança seria montado e sobre qual responsabilidade para a proteção física das instalações, inclusive contra-ataques terroristas que estes países estão atualmente mais sujeitos que o nosso? Estaríamos dispostos a admitir forças de segurança estrangeiras atuando na proteção das instalações?

Todas essas considerações parecem levar a conclusão que, sendo estratégica, a operação das centrais continuará nas mãos de empresas nacionais, muito provavelmente estatais. Isto não exclui as associações com o capital estrangeiro que, aliás, já estavam previstas no Acordo Brasil-Alemanha.

A Velha Comparação Brasil X Argentina

No Brasil e Argentina, houve sempre uma certa concorrência quanto ao desenvolvimento nuclear. A preocupação com uma corrida armamentista entre os vizinhos foi desarmada e passou a existir possibilidade concreta de cooperação que fortaleça o desenvolvimento de ambos países no aproveitamento da energia nuclear. Essa cooperação, pressupõe um certo equilíbrio entre os dois países o que é sempre bom verificar. A comparação, baseada nos controles externos anteriormente mencionados, está mostrada na Tabela 3.

Tabela 3: Comparação Brasil x Argentina baseada na relevância dos controles da AIEA e do NSG

Convenções de cor:

Vermelho: Controle AIEA Salvaguardas Normais
Vermelho Sublinhado: Principal Objeto das Salvaguardas
Laranja (Controle NSG ou Protocolo Adicional)

(*) A Argentina tem os elementos Candu guardados externamente em silos (depósito a seco) que o Brasil ainda não possui.  Esse tipo de armazenamento é, no entanto, mais simples que o de combustível enriquecido do PWR
__________________

A principal razão da preocupação da chamada comunidade internacional com Brasil e Argentina no início da década de noventa era justificada pela existência, em ambos os países, de programas nucleares independentes não sujeitos às chamadas “salvaguardas abrangentes” onde o país compromete-se a declarar e permitir a verificação, nos locais declarados, de todos os materiais nucleares e todas as instalações que os manipulem. Em 18 de julho de 1991, foi assinado o Acordo Bilateral Brasil-Argentina para Uso Exclusivamente Pacífico da Energia Nuclear, o Acordo de Guadalajara comumente referido como Acordo Bilateral. Esse acordo entrou em vigor em 12 de dezembro do mesmo ano quando oficialmente começou a funcionar a Agência Brasileiro-Argentino de Contabilidade e Controle de Materiais Nucleares – ABACC que está completando 25 anos. No dia seguinte, os dois países assinaram com a Agência Internacional de Energia Atômica – IAEA e com a ABACC o Acordo Quadripartite de Salvaguardas.

Na época, a pretensa corrida Brasil X Argentina se dava na busca das tecnologias sensíveis que poderiam deixar os países mais perto de uma “explosão nuclear pacífica” que os dois ainda reivindicavam o direito de desenvolver. O Acordo Bilateral suprimiu essa hipótese ao reconhecer a impossibilidade prática de distinguir uma explosão pacífica de uma com finalidade bélica.

Era comum, na época que precedeu ao Acordo, tentar apurar o placar nessa corrida onde a capacidade de enriquecer urânio ou de reprocessar o combustível irradiado, separando o Pu produzido do urânio remanescente e dos produtos da fissão eram os parâmetros. Como se sabe, o urânio, altamente enriquecido do isótopo U235, e o Pu239 são matéria prima para construção de explosivos nucleares. A situação à época era mais ou menos de empate porque os argentinos haviam conseguido reprocessar e os brasileiros enriquecer o urânio.

Hoje existe uma promissora cooperação entre os países cujo maior símbolo talvez seja o recente fornecimento de urânio enriquecido pelo Brasil à Argentina para alimentar um reator experimental e o contrato de participação de empresa estatal argentina no Reator Multipropósito.

Ambos os países decidiram não possuir explosivo nuclear e, pelo o que atestam as inspeções da ABACC e da AIEA, têm mantido esse compromisso, mas nunca desistiram, em suas estratégias nacionais, da intenção de manter e ampliar seu domínio nas técnicas nucleares e participar da indústria nuclear. Os dois países têm ainda interesse na propulsão nuclear e estão trabalhando nesse sentido: O Brasil mais diretamente com o PROSUB e o LABGENE e a Argentina com o seu Reator CAREN de 25 MW elétricos, com muitos pontos em comum com um reator naval.

Esta parece ser uma posição prudente porque houve pouco progresso no desarmamento do clube original dos cinco países, considerados como vencedores da Segunda Guerra Mundial, possuidores de armas nucleares (EUA, Inglaterra, França, China e União Soviética, sucedida pela Rússia). Além desses, Israel, Índia, Paquistão e Coreia do Norte passaram a integrar o grupo de países com posse de artefatos nucleares mesmo sem integrar o clube admitido pelo TNP. Além disto, existem outros países no limiar da posse de armamentos nucleares como Japão e Alemanha que optaram pela proteção nuclear dos EUA, mas têm todas as condições tecnológicas e industriais para rapidamente se armarem. Não será surpresa que o Japão se arme nuclearmente se julgar provável a retirada do “guarda-chuva nuclear” americano.

A análise comparativa do desenvolvimento Brasil X Argentina pode ser feita em duas áreas fundamentais: domínio do ciclo de combustível e capacidade da indústria de reatores. Como se sabe, Brasil e Argentina optaram por tecnologia diferentes na produção de energia elétrica nuclear. O Brasil escolheu a linha de reatores pressurizados água leve que utilizam urânio enriquecido (~4%) como combustível e a Argentina a linha de reatores à água pesada e urânio natural[2]. A análise do desenvolvimento no ciclo deve considerar essa opção.

No domínio do ciclo de combustível, existe todo um aparato internacional que procura inibir a proliferação nuclear ente os quais se destacam a AIEA, na aplicação de salvaguardas, e o NSG que tem uma lista específica de equipamentos para as áreas críticas de enriquecimento e reprocessamento. Além disto, existem listas específicas de equipamentos de uso dual cuja exportação sofre controles nos quais se considera a tecnologia e o país e até mesmo a organização de destino. Existem, por exemplo, restrições específicas aos laboratórios de desenvolvimento da Marinha no Brasil que cuidam de aplicações não proscritas. Pelo que se sabe, mesmo empresas de origem estrangeira instaladas no Brasil praticaram ou tentaram praticar este tipo de restrição.

A comparação feita com auxílio da Tabela 3, mostra a vantagem do Brasil na área do enriquecimento isotópico e sua desvantagem nas áreas ligadas ao reprocessamento. Essas atividades foram interrompidas na Argentina, mas o conhecimento adquirido certamente subsiste. Está ativa a área de separação de produtos de fissão (preparação do Mo99), mas embora tenha sido interrompida a separação do Pu e fabricação do óxido misto Pu-U o conhecimento técnico normalmente persiste. A área de fabricação de água pesada, que também foi objeto de tentativa de desenvolvimento no Brasil, foi dominada pela Argentina que, na instalação de usina industrial, optou por tecnologia importada. A Argentina está fazendo as adaptações necessárias para a extensão de vida de Embalse.

Na área de construção de reatores de pesquisa, existe clara superioridade da indústria argentina que desenvolveu seus próprios reatores e exportou outros para Peru, Argélia, Egito e, recentemente, para a Austrália. Na área de reatores de potência, a Argentina participou no desenvolvimento do projeto e na construção de Atucha 1 e 2 e está desenvolvendo um reator modular o CAREN de 3ª geração. A Argentina domina ainda a técnica de fabricação dos tubos e placas de elementos combustíveis de zircaloy que o Brasil ainda importa. Do lado Brasil existem as extraordinárias instalações da NUCLEP e o desenvolvimento de engenharia na montagem e operação de usinas pressurizadas a água leve – PWRs. Também a experiência de montagem e fabricação de submarinos convencionais contribui, nos últimos anos, para avanços em áreas nucleares afins.

O desenvolvimento do Reator Multipropósito, projeto do Brasil com participação argentina, e o protótipo em terra de propulsão naval da Marinha (reator + sistema de geração) são requisitos mínimos para equilibrar um pouco o jogo. Estes projetos de arrasto têm ainda o mérito de poder mobilizar em torno deles a cooperação dos institutos da CNEN e da indústria nacional. No quesito reatores de potência, a participação brasileira na construção das centrais de Angra não tem a intensidade da participação argentina nas unidades de Atucha que incluiu a fase dos projetos básico e detalhado. Concluir Angra 3 é, no entanto, indispensável. O projeto CAREN pode manter o jogo desequilibrado em favor da Argentina na área de reatores.

BRASIL X ARGENTINA OU BRASIL & ARGENTINA?

A crise econômico-política que atingiu ambos os países, também pode impor mudanças de planos nos projetos nucleares. No Brasil, a crise atingiu em cheio o setor causando a paralização das obras de Angra 3 e a substituição de diretores da empresa estatal proprietária das usinas. Ainda não se tem uma avaliação do possível efeito no programa do submarino. Na Argentina, provavelmente o quadro econômico imporá atrasos o que, aliás, não é novidade no histórico de nossos países com crises mais ao menos a cada dez anos nas quais os longos projetos nucleares são quase inevitavelmente atropelados. O importante tem sido, nas crises, manter o rumo.

Existe uma nítida complementariedade entre as capacidades dos dois países. Existe também uma já significativa cooperação na área nuclear que, assim como a distensão que deu origem à ABACC, fixa bases na boa relação (formal e informal) entre técnicos, cientistas e até militares dos dois países que, aliás, nunca deixou de existir e foi uma das bases do próprio Acordo Bilateral. Outro fator favorável é que, coincidência ou não, nossas opções políticas de governo têm estado em fase desde os regimes militares até as diversas duplas de presidentes pós abertura. Deve-se considerar ainda que na atual crise, também simultânea, existe a oportunidade de redução de custos com a adoção de projetos nucleares compartidos.

_________________________________

Nota: Sobre a Política Nuclear Argentina

“El caso de la Argentina no es el típico de la mayoría de los Estados en desarrollo que al emprender el camino de la actividad nuclear suelen recibir el aporte foráneo “llave en mano”, es decir, a través del suministro de instalaciones y equipos diseñados y fabricados en el país proveedor.

No fue esa la política de la Argentina: dentro de los límites de sus posibilidades, el país prefirió desarrollar su propia tecnología. Así, cuando las capacidades científicas, tecnológicas e industriales lo permitieron, utilizó su propio potencial para realizar por si misma las obras programadas o, en aquellos casos en que ineludiblemente debió recurrir a celebrar contratos comerciales con empresas extranjeras, participó activamente en la ejecución de esas obras.”

El desarrollo nuclear argentino: 60 años de una historia exitosa ROBERTO ORNSTEIN – Comisión Nacional de Energía Atómica 2010

http://www2.cnea.gov.ar/pdfs/revista_cnea/37/60a%C3%B1os.pdf
(link original não ativo)

download alternativo: ornsteincnea60anos

__________________

[1] Também conhecido como “Programa Paralelo” que conseguiu articular o esforço nacional de pesquisa e desenvolvimento em torno de objetivos definidos.

[2] Para melhorar o uso do combustível pode-se usar urânio levemente enriquecido.

ApresentaçãoPorque é Necessária uma Política Nuclear |
O que é Estratégico na Energia Nuclear | Tango X Samba |

Porque é Necessária uma Política Nuclear

Carlos Feu Alvim e Olga Mafra

Para que um país alcance êxito, na área nuclear ou em qualquer atividade de importância estratégica necessita identificar objetivos de longo prazo e, em função deles, estabelecer uma Política de Estado. No setor nuclear, isto é naturalmente evidente porque os projetos nucleares forçosamente ultrapassam os períodos de um ou dois mandatos presidenciais, sendo ineficazes as políticas com horizonte de um mandato governamental.

Uma Política Nuclear precisa ter durabilidade e isto só é possível se ela for o reflexo da vontade nacional que demanda um consenso, também nacional e que exige uma aprovação ampla, mas não obrigatoriamente uma unanimidade.

Em 2013 a então Secretaria de Assuntos Estratégicos – SAE da Presidência da República realizou um trabalho, do qual fomos consultores que buscava estabelecer as bases do que seria uma Política Nuclear para o Brasil. A ideia parece ter tido origem nos bons resultados alcançados na Política e Estratégia de Defesa que a extinta SAE elaborou juntamente com o Ministério da Defesa.

O trabalho de preparação realizado consistiu em:

  • Reunir e estudar a legislação nacional e os tratados existentes;
  • Estudar as estruturas do setor nuclear dos sete países considerados como mais relevantes na área (China, EUA, Rússia, França, Reino Unido, Japão e Coreia do Sul) que representam, incluindo o Brasil cerca de 1/3 da população e superfície mundiais, um pouco mais da metade do PIB (tanto pelo câmbio nominal como pelo poder de compra) e cerca de 3/4 (75%) da capacidade instalada e da capacidade em construção no mundo de produção de eletricidade nuclear;
  • Retirar do exemplo desses países a expressão das Boas Práticas da Política Nuclear;
  • Localizar as vulnerabilidades e as potencialidades do Setor Nuclear no Brasil e identificar ações para prevenir as vulnerabilidades e aproveitar as oportunidades;
  • Identificar Consensos existentes e pontos sob os quais se poderiam estabelecer novos consensos.
  • Alcançar e expressar consensos parecia, na ocasião da elaboração do trabalho (2013/2014) não só necessário como também possível. Mesmo no clima pré-eleitoral em que ele foi finalizado. Na época, ficamos surpresos com os inúmeros pontos de consenso que o Setor Nuclear havia construído nas duas últimas décadas e que não existia nas décadas anteriores.
  • Entre esses pontos de consenso cabe destacar:
  • O uso da energia nuclear deve ser exclusivamente para fins pacíficos [Constituição de 1988];
  • O Brasil não dará novos passos de limitação de sua atividade nuclear enquanto não houver demonstração efetiva dos países armados no sentido do desarmamento [Política de Defesa];
  • O cumprimento do Tratado de Tlatelolco tanto pelos países da Região como pelos países que possuem armas nucleares é importante para a paz na região do Tratado;
  • O Brasil deve ampliar o uso de outras fontes em sua matriz energética de geração de eletricidade;
  • O Sistema Integrado precisa de complementação térmica na geração de base e para amenizar oscilações sazonais da hidro e enfrentar os déficits plurianuais de chuva;
  • A melhor térmica para gerar na base no longo prazo é a nuclear;
  • Energia Nuclear é estratégica;
  • O domínio do ciclo de combustível dá prestígio entre as nações;
  • É necessária a independência tecnológica na área de combustível nuclear e capacidade industrial para atender à necessidade estratégica;
  • O uso da propulsão nuclear é uma necessidade estratégica;
  • Submarino com propulsão nuclear não é arma de destruição em massa e não está proscrito;
  • Submarino com propulsão nuclear é importante para defesa do País;
  • Confiança na própria tecnologia sem negar a tecnologia já desenvolvida é importante;
  • Necessidade de uma capacidade de defesa de acordo com o porte do País;
  • A linha de reatores a ser adotada pelo País é de um PWR avançado;
  • O combustível nuclear no médio prazo é o urânio enriquecido;
  • A tecnologia de enriquecimento é a ultracentrifugação (usando o processo aqui desenvolvido);
  • A separação das partes licenciadora e fiscalizadora da CNEN das suas outras atividades é necessária;
  • Deve haver uma sinergia entre os programas nucleares civil e militar;
  • O programa nuclear da Marinha do Brasil trouxe grandes avanços tecnológicos para o País;
  • A comunidade internacional reconhece as intenções pacíficas da atividade nuclear no Brasil e não o identifica como promotor de proliferação para outros países;
  • A NUCLEP é importante para a indústria nacional e para a construção dos submarinos.

Alguns pontos foram identificados como de “consensos em formação” e poderiam constar da Política sendo que alguns deles foram debatidos em 2008 em reuniões do Conselho de Desenvolvimento do Programa Nuclear, formado pelos ministros de importância na área. Nesse consenso em formação, os seguintes pontos se destacavam:

  • Maior participação da Iniciativa Privada nas atividades nucleares sobretudo nas etapas menos críticas do ciclo nuclear como produção e purificação de urânio, uso de radioisótopos e construção de reatores;
  • Possibilidade de exportação de combustíveis nucleares desde que garantidas as necessidades nacionais ao longo da vida dos reatores existentes e planejados;
  • Necessidade de se equacionar de imediato os problemas de armazenamento de combustíveis irradiados no próprio sítio e da construção de depósito para colocação de resíduos de baixa e média atividade em local próprio;
  • Encontrar uma solução de depósito intermediário de longo prazo (horizonte de 500 anos) dos resíduos de alta atividade do ciclo nuclear com possibilidades de acesso futuro;
  • Atingir autossuficiência na produção de combustíveis para os reatores de produção de energia e pesquisa;
  • Atingir a autossuficiência em todas as fases de produção do combustível nuclear (inclusive conversão);
  • Incentivar a pesquisa mineral;
  • Ampliar o uso no Brasil de técnicas e produtos de origem nuclear nas áreas de Medicina, Indústria, Agricultura e Meio Ambiente;
  • Alcançar autossuficiência na área de produção de fármacos e atender as necessidades na área de testes de materiais mediante a instalação de Reator Multipropósito que atenderá ainda as necessidades de pesquisa e desenvolvimento.

O trabalho que realizamos sobre a Política Nuclear se encerrou em meados de 2014. A ideia era apresentar os resultados ao novo Presidente já que a proposição de uma Política fica melhor no momento de força que se supõe existir no início de mandato. A extinção da SAE e os percalços do início do governo, fizeram que a iniciativa de se fazer uma proposta de Política Nuclear fosse adiada.

Neste reinício de governo e com a crise que atingiu o País e o Setor, existe uma urgência por decisões nessa e em outras áreas. Bom seria que elas fossem tomadas visando objetivos coerentes de uma política de longo prazo. Nesse momento, o consenso possivelmente se tornou mais difícil, mas também mais necessário.

 

ApresentaçãoPorque é Necessária uma Política Nuclear |
O que é Estratégico na Energia Nuclear | Tango X Samba |